Algebraic manifold

In mathematics, an algebraic manifold is an algebraic variety which is also a manifold. As such, algebraic manifolds are a generalisation of the concept of smooth curves and surfaces defined by polynomials. An example is the sphere, which can be defined as the zero set of the polynomial x2 + y2 + z2 – 1, and hence is an algebraic variety. For an algebraic manifold, the ground field will be the real numbers or complex numbers; in the case of the real numbers, the manifold of real points is sometimes called a Nash manifold.

Every sufficiently small local patch of an algebraic manifold is isomorphic to km where k is the ground field. Equivalently the variety is smooth (free from singular points). The Riemann sphere is one example of a complex algebraic manifold, since it is the complex projective line.

Examples

See also

References

External links

This article is issued from Wikipedia - version of the 5/5/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.