Bollard pull

Bollard pull is a conventional measure of the pulling (or towing) power of a watercraft. It is defined as the force (in tons or kiloNewtons (kN)) exerted by a vessel under full power, on a shore-mounted bollard through a tow-line, commonly measured in a practical test (but sometimes simulated) under test conditions that include calm water, no tide, level trim, and sufficient depth and side clearance for a free propeller stream. Like the horsepower or mileage rating of a car, it is a convenient but idealized number that must be adjusted for operating conditions that differ from the test. The bollard pull of a vessel may be reported as two numbers, the static or maximum bollard pull - the highest force measured - and the steady or continuous bollard pull, the average of measurements over an interval of, for example, 10 minutes. An equivalent measurement on land is known as drawbar pull, or tractive force, which is used to measure the total horizontal force generated by a locomotive, a piece of heavy machinery such as a tractor, or a truck, (specifically a ballast tractor), which is utilized to move a load.

Bollard pull is primarily (but not only) used for measuring the strength of tugboats, with the largest commercial harbour tugboats in the 2000-2010s having around 60-65 tons of bollard pull, which is described as 15 tons above "normal" tugboats.[1][2]

Background

Unlike in ground vehicles, the statement of installed horsepower is not sufficient to understand how strong a tug is - this is because other factors, like transmission losses, propulsion type, and propulsion system efficiency have an influence as well.

Bollard pull values are stated in tons (written as TBP) or kiloNewtons (kN).[3]

Measurement

Values for bollard pull can be determined in two ways.

Practical trial

Figure 1: bollard pull trial under ideal (imaginary) conditions

This method is useful for one-off ship designs and smaller shipyards. It is limited in precision - a number of boundary conditions need to be observed to obtain reliable results. Summarizing the below requirements, practical bollard pull trials need to be conducted in a deep water seaport, ideally not at the mouth of a river, on a calm day with hardly any traffic.

See Figure 2 for an illustration of error influences in a practical bollard pull trial. Note the difference in elevation of the ends of the line (the port bollard is higher than the ship's towing hook). Furthermore, there is the partial short circuit in propeller discharge current, the uneven trim of the ship and the short length of the tow line. All of these factors contribute to measurement error.

Figure 2: bollard pull trial under real conditions

Simulation

This method eliminates much of the uncertainties of the practical trial. However, any numerical simulation also has an error margin. Furthermore, simulation tools and computer systems capable of determining bollard pull for a ship design are costly. Hence, this method makes sense for larger shipyards and for the design of a series of ships.

Both methods can be combined. Practical trials can be used to validate the result of numerical simulation.

Human-powered vehicles

Practical bollard pull tests under simplified conditions are conducted for human powered vehicles. There, bollard pull is often a category in competitions and gives an indication of the power train efficiency. Although conditions for such measurements are inaccurate in absolute terms, they are the same for all competitors. Hence, they can still be valid for comparing several craft.

See also

Notes

  1. "Rotor Tug "RT Zoe"". Marineline.com. 13 September 2006. Retrieved 19 August 2013.
  2. "Western Marine to build tugboat, vessel for Ctg port". The Independent. 4 June 2012. Retrieved 19 August 2013.
  3. Note the inherent conflict: the SI unit of force is the newton. Even accepting ton as a unit of force, the value of a ton or tonne can mean anything between 8.89 kN and 10.00 kN depending on the definition used.

Further reading

External links

This article is issued from Wikipedia - version of the 9/25/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.