Comodule

In mathematics, a comodule or corepresentation is a concept dual to a module. The definition of a comodule over a coalgebra is formed by dualizing the definition of a module over an associative algebra.

Formal definition

Let K be a field, and C be a coalgebra over K. A (right) comodule over C is a K-vector space M together with a linear map

such that

  1. ,

where Δ is the comultiplication for C, and ε is the counit.

Note that in the second rule we have identified with .

Examples

  1. Let the comultiplication on be given by .
  2. Let the counit on be given by .
  3. Let the map on V be given by , where is the i-th homogeneous piece of .

Rational comodule

If M is a (right) comodule over the coalgebra C, then M is a (left) module over the dual algebra C, but the converse is not true in general: a module over C is not necessarily a comodule over C. A rational comodule is a module over C which becomes a comodule over C in the natural way.

References

This article is issued from Wikipedia - version of the 3/11/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.