Comparison of CPU microarchitectures
The following is a comparison of CPU microarchitectures.
Microarchitecture | Pipeline stages | Misc |
---|---|---|
AMD K5 | Out-of-order execution, register renaming, speculative execution | |
AMD K6 | Superscalar, branch prediction | |
AMD K6-III | Branch prediction, speculative execution, out-of-order execution[1] | |
AMD K7 | Out-of-order execution, branch prediction, Harvard architecture | |
AMD K8 | 64-bit, integrated memory controller, 16 byte instruction prefetching | |
AMD K10 | Superscalar, out-of-order execution, 32-way set associative L3 victim cache, 32-byte instruction prefetching | |
ARM7TDMI (-S) | 3 | |
ARM7EJ-S | 5 | |
ARM810 | 5 | |
ARM9TDMI | 5 | |
ARM1020E | 6 | |
XScale PXA210/PXA250 | 7 | |
ARM1136J(F)-S | 8 | |
ARM1156T2(F)-S | 9 | |
ARM Cortex-A5 | 8 | Single issue, in-order |
ARM Cortex-A7 MPCore | 8 | Partial dual-issue, in-order |
ARM Cortex-A8 | 13 | Dual-issue |
ARM Cortex-A9 MPCore | 8–11 | Out-of-order, speculative issue, superscalar |
ARM Cortex-A15 MPCore | 15 | Multi-core (up to 16), out-of-order, speculative issue, 3-way superscalar |
ARM Cortex-A53 | Partial dual-issue, in-order | |
ARM Cortex-A57 | Deeply out-of-order, wide multi-issue, 3-way superscalar | |
AVR32 AP7 | 7 | |
AVR32 UC3 | 3 | Harvard architecture |
Bobcat | Out-of-order execution | |
Bulldozer | Shared multithreaded L2 cache, multithreading, multi-core, around 20 stage long pipeline, integrated memory controller, out-of-order, superscalar, up to 16 cores per chip, up to 16 MB L3 cache, Virtualization, Turbo Core, FlexFPU which use simultaneous multithreading[2] | |
Piledriver | Shared multithreaded L2 cache, multithreading, multi-core, around 20 stage long pipeline, integrated memory controller, out-of-order, superscalar, up to 16 MB L2 cache, up to 16 MB L3 cache, Virtualization, FlexFPU which use simultaneous multithreading,[2] up to 16 cores per chip, up to 5 GHz clock speed, up to 220 W TDP, Turbo Core | |
Excavator | 4 | |
Zen | 6 | Simultaneous multithreading |
Crusoe | In-order execution, 128-bit VLIW, integrated memory controller | |
Efficeon | In-order execution, 256-bit VLIW, fully integrated memory controller | |
Cyrix Cx5x86 | 6[3] | Branch prediction |
Cyrix 6x86 | Superscalar, superpipelined, register renaming, speculative execution, out-of-order execution | |
DLX | 5 | |
eSi-3200 | 5 | In-order, speculative issue |
eSi-3250 | 5 | In-order, speculative issue |
EV4 (Alpha 21064) | Superscalar | |
EV7 (Alpha 21364) | Superscalar design with out-of-order execution, branch prediction, 4-way simultaneous multithreading, integrated memory controller | |
EV8 (Alpha 21464) | Superscalar design with out-of-order execution | |
65k | 30+ | Ultra low power consumption, register renaming, out of order execution, branch prediction, multi-core, module, capable of reach higher clock |
P5 (Pentium) | 5 | Superscalar |
P6 (Pentium Pro) | 14 | Speculative execution, register renaming, superscalar design with out-of-order execution |
P6 (Pentium II) | 14[4] | Branch prediction |
P6 (Pentium III) | 14[4] | |
Intel Itanium | 11[5] | Speculative execution, branch prediction, register renaming, 30 execution units, multithreading, multi-core, coarse-grained mutithreading, 2-way simultaneous multithreading, Dual-domain multithreading, Turbo Boost, Virtualization, VLIW, RAS with Advanced Machine Check Architecture, Instruction Replay technology, Cache Safe technology, Enhanced SpeedStep technology |
Intel NetBurst (Willamette) | 20 | 2-way simultaneous multithreading (Hyper-threading), Rapid Execution Engine, Execution Trace Cache, quad-pumped Front-Side Bus, Hyper-pipelined Technology, superscalar, out-of order |
NetBurst (Northwood) | 20 | 2-way simultaneous multithreading |
NetBurst (Prescott) | 31 | 2-way simultaneous multithreading |
NetBurst (Cedar Mill) | 31 | 2-way simultaneous multithreading |
Intel Core | 12 | Multi-core, out-of-order, 4-way superscalar |
Intel Atom | 16 | 2-way simultaneous multithreading, in-order, no instruction reordering, speculative execution, or register renaming |
Intel Atom Oak Trail | 2-way simultaneous multithreading, in-order, burst mode, 512 KB L2 cache | |
Intel Atom Silvermont | Out-of-order execution | |
Nehalem | 14 | 2-way simultaneous multithreading, out-of-order, 6-way superscalar, integrated memory controller, L1/L2/L3 cache, Turbo Boost |
Sandy Bridge | 14 | 2-way simultaneous multithreading, multi-core, integrated memory controller, L1/L2/L3 cache, 2 threads per core, Turbo Boost |
Intel Haswell | 14 | Multi-core, multithreading, 2-way simultaneous multithreading, hardware-based transactional memory (in selected models), L4 cache (in GT3 models), Turbo Boost, out-of-order execution, superscalar, up to 8 MB L3 cache (mainstream), up to 20 MB L3 cache (Extreme) |
Broadwell | Multi-core, multithreading | |
Skylake | Multi-core, L4 cache | |
Intel Xeon Phi 7120x | 7-stage integer, 6-stage vector | Multi-core, multithreading, 4 hardware-based simultaneous threads per core which can't be disabled unlike regular HyperThreading, Time-multiplexed multithreading, 61 cores per chip, 244 threads per chip, 30.5 MB L2 cache, 300 W TDP, Turbo Boost, in-order dual-issue pipelines, coprocessor, Floating-point accelerator, 512-bit wide Vector-FPU |
LatticeMico32 | 6 | Harvard architecture |
POWER1 | Superscalar, out-of-order execution | |
POWER3 | Superscalar, out-of-order execution | |
POWER4 | Superscalar, speculative execution, out-of-order execution | |
POWER5 | 2-way simultaneous multithreading, out-of-order execution, integrated memory controller | |
IBM POWER6 | 2-way simultaneous multithreading, in-order execution, up to 5 GHz | |
IBM POWER7+ | Multi-core, multithreading, out-of-order, superscalar, 4 intelligent simultaneous threads per core, 12 execution units per core, 8 cores per chip, 80 MB L3 cache, true hardware entropy generator, hardware-assisted cryptographic acceleration, fixed-point unit, decimal fixed-point unit, Turbo Core, decimal floating-point unit | |
IBM Cell | Multi-core, multithreading, 2-way simultaneous multithreading (PPE), Power Processor Element, Synergistic Processing Elements, Element Interconnect Bus, in-order execution | |
IBM Cyclops64 | Multi-core, multithreading, 2 threads per core, in-order | |
IBM zEnterprise zEC12 | 15/16/17 | Multi-core, 6 cores per chip, up to 5.5 GHz, superscalar, out-of-order, 48 MB L3 cache, 384 MB shared L4 cache |
PowerPC 401 | 3 | |
PowerPC 405 | 5 | |
PowerPC 440 | 7 | |
PowerPC 470 | 9 | Symmetric multiprocessing (SMP) |
PowerPC A2 | 15 | |
PowerPC e300 | 4 | Superscalar, branch prediction |
PowerPC e500 | Dual 7 stage | Multi-core |
PowerPC e600 | 3-issue 7 stage | Superscalar out-of-order execution, branch prediction |
PowerPC e5500 | 4-issue 7 stage | Out-of-order, multi-core |
PowerPC e6500 | Multi-core | |
PowerPC 603 | 4 | 5 execution units, branch prediction, no SMP |
PowerPC 603q | 5 | In-order |
PowerPC 604 | 6 | Superscalar, out-of-order execution, 6 execution units, SMP support |
PowerPC 620 | 5 | Out-of-order execution, SMP support |
PWRficient | Superscalar, out-of-order execution, 6 execution units | |
R4000 | 8 | Scalar |
StrongARM SA-110 | 5 | Scalar, in-order |
SuperH SH2 | 5 | |
SuperH SH2A | 5 | Superscalar, Harvard architecture |
SPARC | Superscalar | |
hyperSPARC | Superscalar | |
SuperSPARC | Superscalar, in-order | |
SPARC64 VI/VII/VII+ | Superscalar, out-of-order[6] | |
UltraSPARC | 9 | |
UltraSPARC T1 | 6 | Open source, multithreading, multi-core, 4 threads per core, integrated memory controller |
UltraSPARC T2 | 8 | Open source, multithreading, multi-core, 8 threads per core |
SPARC T3 | 8 | Multithreading, multi-core, 8 threads per core, SMP, 16 cores per chip, 2 MB L3 cache, in-order, hardware random number generator |
Oracle SPARC T4 | 16 | Multithreading, multi-core, 8 fine-grained threads per core of which 2 can be executed simultaneously, 2-way simultaneous multithreading, SMP, 8 cores per chip, out-of-order, 4 MB L3 cache, out-of order, Hardware random number generator |
Oracle Corporation SPARC T5 | 16 | Multithreading, multi-core, 8 fine-grained threads per core of which 2 can be executed simultaneously, 2-way simultaneous multithreading, 16 cores per chip, out-of-order, 16-way associative shared 8 MB L3 cache, hardware-assisted cryptographic acceleration, stream-processing unit, out-of order execution, RAS features, 16 cryptography units per chip, hardware random number generator |
Oracle SPARC M5 | 16 | Multithreading, multi-core, 8 fine-grained threads per core of which 2 can be executed simultaneously, 2-way simultaneous multithreading, 6 cores per chip, out-of-order, 48 MB L3 cache, out-of order execution, RAS features, stream-processing unit, hardware-assisted cryptographic acceleration, 6 cryptography units per chip, Hardware random number generator |
Fujitsu SPARC64 X | Multithreading, multi-core, 2-way simultaneous multithreading, 16 cores per chip, out-of order, 24 MB L2 cache, out-of order, RAS features | |
Imagination Technologies MIPS Warrior | ||
VIA C7 | In-order execution | |
VIA Nano (Isaiah) | Superscalar out-of-order execution, branch prediction, 7 execution units | |
WinChip | 4 | In-order execution |
See also
References
- ↑ "Products We Design". amd.com. Retrieved 19 January 2014.
- 1 2 "wp-content/uploads/2013/07/AMD-Steamroller-vs-Bulldozer". cdn3.wccftech.com. Retrieved 19 January 2014.
- ↑ "Cyrix 5x86 ("M1sc")". pcguide.com. Retrieved 19 January 2014.
- 1 2 "Computer Science 246: Computer Architecture" (PDF). Harvard University. Retrieved 23 December 2013.
P6 pipeline
- ↑ Intel Itanium 2 Processor Hardware Developer's Manual. p. 14. http://www.intel.com/design/itanium2/manuals/25110901.pdf (2002) Retrieved 28 November 2011
- ↑ "Multi Core Processor SPARC64™ Series : Fujitsu Global". fujitsu.com. Retrieved 19 January 2014.
This article is issued from Wikipedia - version of the 4/28/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.