Computational Resource for Drug Discovery

Computational Resources for Drug Discovery (CRDD) is one of the important silico modules of Open Source for Drug Discovery (OSDD). The CRDD web portal provides computer resources related to drug discovery on a single platform. It provides computational resources for researchers in computer-aided drug design, a discussion forum, and resources to maintain Wikipedia related to drug discovery, predict inhibitors, and predict the ADME-Tox property of molecules One of the major objectives of CRDD is to promote open source software in the field of chemoinformatics and pharmacoinformatics.

Features

Under CRDD, all the resources related to computer-aided drug design have been collected and compiled. These resources are organized and presented on CRDD so users can get resources from a single source.

Community contribution

Under this category platform has been developed where community may contribute in the process of drug discovery.

Indigenous development: software and web services

Beside collecting and compiling resources, CRDD members develop new software and web services. All services developed are free for academic use. The following are a few major tools developed at CRDD.

Development of databases

Software developed

Resources created

Web services for chemoinformatics

First time in the world CRDD team has developed open source platform which allows users to predict inhibitors against novel M. Tuberculosis drug targets and other important properties of drug molecules like ADMET. Following are list of few servers.

Prediction and analysis of drug targets

References

  1. Rashid, Mamoon; Singla, Deepak; Sharma, Arun; Kumar, Manish; Raghava, Gajendra PS (2009). "Hmrbase: a database of hormones and their receptors". BMC Genomics. 10: 307. doi:10.1186/1471-2164-10-307. PMC 2720991Freely accessible. PMID 19589147.
  2. Singla, Deepak; Sharma, Arun; Kaur, Jasjit; Panwar, Bharat; Raghava, Gajendra PS (2010). "BIAdb: A curated database of benzylisoquinoline alkaloids". BMC Pharmacology. 10: 4. doi:10.1186/1471-2210-10-4. PMC 2844369Freely accessible. PMID 20205728.
  3. Ansari, H. R.; Flower, D. R.; Raghava, G. P. S. (2009). "AntigenDB: an immunoinformatics database of pathogen antigens". Nucleic Acids Research. 38 (Database issue): D847. doi:10.1093/nar/gkp830. PMC 2808902Freely accessible. PMID 19820110.
  4. Nucleic Acids Research, 2011
  5. Mishra, Nitish K; Agarwal, Sandhya; Raghava, Gajendra PS (2010). "Prediction of cytochrome P450 isoform responsible for metabolizing a drug molecule". BMC Pharmacology. 10: 8. doi:10.1186/1471-2210-10-8. PMC 2912882Freely accessible. PMID 20637097.
  6. Garg, Aarti; Tewari, Rupinder; Raghava, Gajendra PS (2010). "KiDoQ: using docking based energy scores to develop ligand based model for predicting antibacterials". BMC Bioinformatics. 11: 125. doi:10.1186/1471-2105-11-125. PMC 2841597Freely accessible. PMID 20222969.
  7. Singla, Deepak; Anurag, Meenakshi; dash, Debasis; Raghava, Gajendra PS (2011). "A Web Server for Predicting Inhibitors against Bacterial Target GlmU Protein". BMC Pharmacology. 11: 5. doi:10.1186/1471-2210-11-5.
  8. Kumar, M; Gromiha, MM; Raghava, GP (2010). "SVM based prediction of RNA-binding proteins using binding residues and evolutionary information". Journal of Molecular Recognition. 24 (2): n/a. doi:10.1002/jmr.1061. PMID 20677174.
  9. Rashid, M. and Raghava, G. P. S. (2010) A simple approach for predicting protein–protein interactions. Current Protein & Peptide Science (In Press).
  10. Chauhan, JS; Mishra, NK; Raghava, GP (2009). "Identification of ATP binding residues of a protein from its primary sequence". BMC Bioinformatics. 10: 434. doi:10.1186/1471-2105-10-434. PMC 2803200Freely accessible. PMID 20021687.
  11. Mishra, Nitish K.; Raghava, Gajendra P. S. (2010). "Prediction of FAD interacting residues in a protein from its primary sequence using evolutionary information". BMC Bioinformatics. 11: S48. doi:10.1186/1471-2105-11-S1-S48. PMC 3009520Freely accessible. PMID 20122222.
  12. Chauhan, JS; Mishra, NK; Raghava, GP (2010). "Prediction of GTP interacting residues, dipeptides and tripeptides in a protein from its evolutionary information". BMC Bioinformatics. 11: 301. doi:10.1186/1471-2105-11-301. PMC 3098072Freely accessible. PMID 20525281.
  13. Ansari, HR; Raghava, GP (2010). "Identification of NAD interacting residues in proteins". BMC Bioinformatics. 11: 160. doi:10.1186/1471-2105-11-160. PMC 2853471Freely accessible. PMID 20353553.
  14. Agarwal; et al. (2011). "Identification of Mannose Interacting Residues Using Local Composition". PLoS ONE. 6: e24039. doi:10.1371/journal.pone.0024039.
  15. Panwar, Bharat; Raghava, Gajendra PS (2010). "Prediction and classification of aminoacyl tRNA synthetases using PROSITE domains". BMC Genomics. 11: 507. doi:10.1186/1471-2164-11-507. PMC 2997003Freely accessible. PMID 20860794.
  16. Ansari, HR; Raghava, Gajendra PS (2010). "Identification of conformational B-cell Epitopes in an antigen from its primary sequence". Immunome Research. 6: 6. doi:10.1186/1745-7580-6-6. PMC 2974664Freely accessible. PMID 20961417.
  17. Ahmed, F; Raghava, Gajendra PS (2011). "Designing of Highly Effective Complementary and Mismatch siRNAs for Silencing a Gene". PLoS ONE. 6 (8): e23443. doi:10.1371/journal.pone.0023443. PMC 3154470Freely accessible. PMID 21853133.

Further reading

This article is issued from Wikipedia - version of the 11/13/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.