Descriptive complexity theory

For other uses, see Kolmogorov complexity.

Descriptive complexity is a branch of computational complexity theory and of finite model theory that characterizes complexity classes by the type of logic needed to express the languages in them. For example, PH, the union of all complexity classes in the polynomial hierarchy, is precisely the class of languages expressible by statements of second-order logic. This connection between complexity and the logic of finite structures allows results to be transferred easily from one area to the other, facilitating new proof methods and providing additional evidence that the main complexity classes are somehow "natural" and not tied to the specific abstract machines used to define them.

Specifically, each logical system produces a set of queries expressible in it. The queries – when restricted to finite structures – correspond to the computational problems of traditional complexity theory.

The first main result of descriptive complexity was Fagin's theorem, shown by Ronald Fagin in 1974. It established that NP is precisely the set of languages expressible by sentences of existential second-order logic; that is, second order logic excluding universal quantification over relations, functions, and subsets. Many other classes were later characterized in such a manner, most of them by Neil Immerman:

See also

References

  1. Lauri Hella and José María Turull-Torres (2006), "Computing queries with higher-order logics", Theoretical Computer Science ((what is called "number" in bibtex) ed.), Essex, UK: Elsevier Science Publishers Ltd., 355 (2): 197–214, doi:10.1016/j.tcs.2006.01.009, ISSN 0304-3975

Further reading

External links

This article is issued from Wikipedia - version of the 10/5/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.