Dispersal index

Dispersal index is a parameter in volcanology. The dispersal index was defined by George P. L. Walker in 1973 as the surface area covered by an ash or tephra fall, where the thickness is equal or more than 1/100 of the thickness of the fall at the vent.[1] An eruption with a low dispersal index leaves most of its products close to the vent, forming a cone; an eruption with a high dispersal index forms thinner sheet-like deposits which extends to larger distances from the vent.[2] A dispersal index of 500 square kilometres (190 sq mi) or more of coarse pumice is one proposed definition of a Plinian eruption.[3] Likewise, a dispersal index of 50,000 square kilometres (19,000 sq mi) has been proposed as a cutoff for an ultraplinian eruption.[4] The definition of 1/100 of the near-vent thickness was partially dictated by the fact that most tephra deposits are not well preserved at larger distances.[5]

Originally, the dispersal index was considered a function of the height of the eruption column. Later, a role for the size of the tephra and ash particles was identified,[1] with coarser fall deposits covering smaller surfaces than finer deposits generated by a column of the same height.[3] For example, a deposit with a dispersal index of 500 square kilometres (190 sq mi) can be formed by a column with heights of 14–18 square kilometres (5.4–6.9 sq mi).[6] Thus, Walker's idea of the column height alone separating a cone forming eruption and an eruption generating a sheet-like deposit was later considered oversimplified.[7] An additional complicating factor is that fine particles are prone to aggregating and thus falling out more quickly from the column.[8] Further problems arise when the maximum thickness has to be determined.[9]

The height of the eruption column, the presence and behaviour of water, the speed and direction of the wind as well as the sizes of the various tephra particles influence the fallout patterns of an ash cloud.[10]

The dispersal index for volcanic eruptions ranges from <1 square kilometre (0.39 sq mi) and 1–1,000 square kilometres (0.39–386.10 sq mi).[3] A number of basaltic phreatomagmatic deposits, frequently associated with tuff rings, have a dispersal index of less than 50 square kilometres (19 sq mi).[11]

Volcano Eruption Age Dispersal index Source
Taupo Hatepe eruption 1820 BP 100,000 square kilometres (39,000 sq mi) [3]
Taupo Oruanui eruption ~20000 BP >100,000 square kilometres (39,000 sq mi) [11]
Taupo Hinemaiaia tephra 4500 years ago 40,000 square kilometres (15,000 sq mi) [12]
Kelut 1990 2,000 square kilometres (770 sq mi) [13]
Rinjani 1257 Samalas eruption, P1 phase 1257 7,500 square kilometres (2,900 sq mi) [14]
Rinjani 1257 Samalas eruption, P3 phase 1257 110,500 square kilometres (42,700 sq mi) [14]
Mount Pelée P1 eruption 650 BP 900 square kilometres (350 sq mi) [15]
Mount Pelée P2 eruption 1670 BP 800 square kilometres (310 sq mi) [15]
Mount Pelée P3 eruption 2010 BP 1,000 square kilometres (390 sq mi) [15]
Rabaul Vulcan 1937 40 square kilometres (15 sq mi) [16]
Okataina Volcanic Complex Whakatane tephra ~ 5500 BP ~200,000 square kilometres (77,000 sq mi) [17]
Agua de Pau Fogo A 5000 BP 1,500 square kilometres (580 sq mi) [18]

A related measure is the thickness half-distance ,[10] which defines the distance over which the thickness of a deposit halves.[19] These values are related with each other over for circular deposits.

References

  1. 1 2 Pyle 1989, p. 10.
  2. Fierstein et al. 1997, p. 215.
  3. 1 2 3 4 Walker 1980, p. 88.
  4. Walker 1980, p. 91.
  5. Bonadonna, C.; Ernst, G.G.J.; Sparks, R.S.J. (May 1998). "Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number". Journal of Volcanology and Geothermal Research. 81 (3-4): 181. doi:10.1016/S0377-0273(98)00007-9.
  6. Sparks et al. 1992, p. 690.
  7. Pyle 1989, p. 11.
  8. Sparks et al. 1992, p. 694.
  9. Hildreth, Wes; Drake, Robert E (January 1992). "Volcan Quizapu, Chilean Andes". Bulletin of Volcanology. 54 (2): 111. doi:10.1007/BF00278002.
  10. 1 2 Sparks et al. 1992, p. 685.
  11. 1 2 Self, S.; Sparks, R. S. J. (September 1978). "Characteristics of widespread pyroclastic deposits formed by the interaction of silicic magma and water". Bulletin Volcanologique. 41 (3): 209–210. doi:10.1007/BF02597223.
  12. Lowe, David J. (January 1986). "Revision of the age and stratigraphic relationships of Hinemaiaia Tephra and Whakatane Ash, North Island, New Zealand, using distal occurrences in organic deposits". New Zealand Journal of Geology and Geophysics. 29 (1): 71. doi:10.1080/00288306.1986.10427523.
  13. Bourdier, Jean-Louis; Pratomo, Indyo; Thouret, Jean-Claude; Georges Boudon; Vincent, Pierre M (December 1997). "Observations, stratigraphy and eruptive processes of the 1990 eruption of Kelut volcano, Indonesia". Journal of Volcanology and Geothermal Research. 79 (3-4): 200. doi:10.1016/S0377-0273(97)00031-0.
  14. 1 2 Vidal, Céline M.; Komorowski, Jean-Christophe; Métrich, Nicole; Pratomo, Indyo; Kartadinata, Nugraha; Prambada, Oktory; Michel, Agnès; Carazzo, Guillaume; Lavigne, Franck; Rodysill, Jessica; Fontijn, Karen; Surono (8 August 2015). "Dynamics of the major plinian eruption of Samalas in 1257 A.D. (Lombok, Indonesia)". Bulletin of Volcanology. 77 (9): 20. doi:10.1007/s00445-015-0960-9.
  15. 1 2 3 Traineau, Hervé; Westercamp, Denis; Bardintzeff, Jacques-Marie; Miskovsky, Jean-Claude (August 1989). "The recent pumice eruptions of Mt. Pelée volcano, Martinique. Part I: Depositional sequences, description of pumiceous deposits". Journal of Volcanology and Geothermal Research. 38 (1-2): 25. doi:10.1016/0377-0273(89)90027-9.
  16. Mckee, C.O.; Johnson, R.W.; Lowenstein, P.L.; Riley, S.J.; Blong, R.J.; De Saint Ours, P.; Talai, B. (February 1985). "Rabaul Caldera, Papua New Guinea: Volcanic hazards, surveillance, and eruption contingency planning". Journal of Volcanology and Geothermal Research. 23 (3-4): 201. doi:10.1016/0377-0273(85)90035-6.
  17. Holt, Katherine A.; Lowe, David J.; Hogg, Alan G.; Wallace, R. Clel (December 2011). "Distal occurrence of mid-Holocene Whakatane Tephra on the Chatham Islands, New Zealand, and potential for cryptotephra studies". Quaternary International. 246 (1-2): 348. doi:10.1016/j.quaint.2011.06.026.
  18. Bursik, M I; Sparks, R S J; Gilbert, J S; Carey, S N (April 1992). "Sedimentation of tephra by volcanic plumes: I. Theory and its comparison with a study of the Fogo A plinian deposit, Sao Miguel (Azores)". Bulletin of Volcanology. 54 (4): 330. doi:10.1007/BF00301486.
  19. Pyle 1989, p. 2.

Sources

  • Fierstein, J.; Houghton, B.F.; Wilson, C.J.N.; Hildreth, W. (April 1997). "Complexities of plinian fall deposition at vent: an example from the 1912 Novarupta eruption (Alaska)". Journal of Volcanology and Geothermal Research. 76 (3-4): 215–227. doi:10.1016/S0377-0273(96)00081-9. 
  • Sparks, R S J; Bursik, M I; Ablay, G J; Thomas, R M E; Carey, S N (October 1992). "Sedimentation of tephra by volcanic plumes. Part 2: controls on thickness and grain-size variations of tephra fall deposits". Bulletin of Volcanology. 54 (8): 685–695. doi:10.1007/BF00430779. 
  • Walker, G.P.L. (August 1980). "The Taupo pumice: Product of the most powerful known (ultraplinian) eruption?". Journal of Volcanology and Geothermal Research. 8 (1): 69–94. doi:10.1016/0377-0273(80)90008-6. 
  • Pyle, David M. (January 1989). "The thickness, volume and grainsize of tephra fall deposits". Bulletin of Volcanology. 51 (1): 1–15. doi:10.1007/BF01086757. 
This article is issued from Wikipedia - version of the 10/19/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.