Electrostatic–pneumatic activation

Electrostatic–pneumatic activation is an actuation method for shaping thin membranes for MEMS and MOEMS devices.[1][2] This method benefits from operation at high speed and low power consumption.[3] It can also cause large deflection on thin membranes. Electrostatic-pneumatic MEMS devices usually consist of two membranes with a sealed cavity in between. One membrane calling actuator deflects into cavity by electrostatic pressure to compress air and increase air pressure. Elevated pressure pushes the other membrane and cause dome shape. With direct electrostatic actuation on membrane, a concave shape is achieved.

This method is used in MEMS deformable mirrors[4][5] [6][7][8] to create convex and concave mirrors.[9] Electrostatic-pneumatic actuation can double maximum displacement of a thin membrane compared to only electrostatic actuated membrane.[10]

Moreover, mechanical advantage[11] is possible by use of electrostatic-pneumatic actuation. Since the cavity is filled with air, mechanical amplification is lower than hydraulic machinery with a non-compressible fluid.

References

  1. K. J. Gabriel, O. Tabata, K. Shimaoka, S. Sugiyama, H. Fujita "Surface normal electrostatic/pneumatic actuator" Micro Electro Mechanical Systems 92 Travemunde (Germany), Feb. 1992
  2. Cleopatra Cabuz, Thomas R. Ohnstein, Michael R. Elgersma (2000), "Electrostatic/pneumatic actuator for active surfaces" US Patent No. 09/573,460
  3. Moghimi, M. J. Chattergoon, K. N. Dickensheets, D. L. “High speed focus control capability of electrostatic–pneumatic MEMS deformable mirrors” in Proc. of SPIE 8977, MOEMS and Miniaturized Systems XIII, San Francisco, CA, Mar. 2014, pp. 897709, 897709-9
  4. Bifano, Thomas (2011). "Adaptive imaging: MEMS deformable mirrors". Nature Phtonics. 5: 21–23. doi:10.1038/nphoton.2010.297.
  5. Moghimi, Mohammad J.; Chattergoon, Krishna N.; Wilson, Chris R.; Dickensheets, David L. (Aug 2013). "High Speed Focus Control MEMS Mirror With Controlled Air Damping for Vital Microscopy". Journal of Microelectromechanical Systems. 22 (4): 938–948. doi:10.1109/JMEMS.2013.2251320. Retrieved 12 April 2013.
  6. Moghimi, Mohammad J (1 April 2011). "MOEMS deformable mirrors for focus control in vital microscopy". Micro Nanolithography MEMS MOEMS. 10 (2). doi:10.1117/1.3574129. Retrieved 1 April 2011.
  7. "mirao™ 52-e Deformable Mirror". http://www.imagine-eyes.com/content/view/45/103/. External link in |website= (help);
  8. "MFC Series MEMS Adjustable Focus Mirrors". http://www.bridgerphotonics.com/products.php?product_id=39. External link in |website= (help);
  9. Moghimi, M. J. Wilson, C. Dickensheets, D. L. “Electrostatic-pneumatic membrane mirror with positive or negative variable optical power” in Proc. of SPIE 8617, MEMS Adaptive Optics VII, San Francisco, CA, Mar. 2013, pp. 861707-1, 861707-9
  10. Moghimi, M. J. Wilson, C. R. Dickensheets, D. L., “Electrostatic-pnuematic MEMS deformable mirror for focus control” Optical MEMS and Nanophotonics (OMN), 2012 International Conference on , Banff, Canada, Aug. 2012, pp.132-133
  11. Bansal, R. K. (1 Jan 2004). A TextBook of Theory of Machines. Firewall Media. ISBN 9788170084181.
This article is issued from Wikipedia - version of the 8/4/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.