Equivariant K-theory

For the topological equivariant K-theory, see topological K-theory.

In mathematics, the equivariant algebraic K-theory is an algebraic K-theory associated to the category of equivariant coherent sheaves on an algebraic scheme X with action of a linear algebraic group G, via Quillen's Q-construction; thus, by definition,

In particular, is the Grothendieck group of . The theory was developed by R. W. Thomason in 1980s.[1] Specifically, he proved equivariant analogs of fundamental theorems such as the localization theorem.

Equivalently, may be defined as the of the category of coherent sheaves on the quotient stack . (Hence, the equivariant K-theory is a specific case of the K-theory of a stack.)

A version of the Lefschetz fixed point theorem holds in the setting of equivariant (algebraic) K-theory.[2]

Fundamental theorems

Let X be an equivariant algebraic scheme.

Localization theorem  Given a closed immersion of equivariant algebraic schemes and an open immersion , there is a long exact sequence of groups

References

Further reading


This article is issued from Wikipedia - version of the 4/30/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.