Ethyl cyanoacetate

Ethyl cyanoacetate
Identifiers
105-56-6
3D model (Jmol) Interactive image
ECHA InfoCard 100.003.009
PubChem 7764
Properties
C5H7NO2
Molar mass 113.12 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Ethyl cyanoacetate is an organic compound that contains a carboxylate ester and a nitrile. It is a colourless[1] liquid with a pleasant odor. This material is useful as a starting material for synthesis due to its variety of functional groups and chemical reactivity.

Production

Ethyl cyanoacetate may be prepared in various ways:

Properties

Physical properties

Vapour pressure of ethyl cyanoacetate

Ethyl cyanoacetate is a colorless liquid, it boils at atmospheric pressure at 209 °C.[5] The vapor pressure follows the Antoine equation log10(P) = A−(B/(T+C)) (P in bar, T in K) with A = 7.46724, B = 3693.663 and C = 16.138 in the temperature range from 341 to 479 K[6] In solid phase, two polymorphic forms can occur.[7] Below -111 °C, the crystal form II is dominant.[7] Above this temperature, the crystal form I is formed which melts at -22 °C.[5] The heat capacity at 25 °C is 220.22 J K−1 mol−1.[7]

Chemical properties

With its three different reactive centers—nitrile, ester, acidic methylene site—ethyl cyanoacetate is a versatile synthetic building block for a variety of functional and pharmacologically active substances. It contains an acidic methylene group, flanked by both the nitrile and carbonyl, and so can be used in condensation reactions like the Knoevenagel condensation or the Michael addition. This reactivity is similar to that of esters of malonic acid. As an example of reactivity at the nitrile, diethyl malonate is obtained from cyanoacetic acid ethyl ester by reaction with ethanol in the presence of strong acids.[2] Heating in the presence of sodium ethoxide forms the dimeric 3-amino-2-cyano-2-pentendiaciddiethylester.[8]

Use

Due to its functionality cyanoacetate reacts:

Ethyl cyanoacetate is a building block for the synthesis of heterocycles which are used for example as drugs:

Also many other functional heterocycles are in good yields accessible from ethyl cyanoacetate, such as 3-substituted coumarin derivatives.[13]

Non-cyclic products from this starting material include:

Ethyl cyanoacetate is also used to prepare 3,3-diphenylpropan-1-amine, which is the precursor used in the synthesis of Prenylamine & Droprenilamine.

Safety

Ethylcyanoacetate has an LD50 of 2820 mg/kg (oral, rat).[14]

References

  1. "Entry in the Römpp". Retrieved 2016-06-15.
  2. 1 2 3 J. K. H. Inglis. "Ethyl Cyanoacetate". Org. Synth. doi:10.15227/orgsyn.008.0074.
  3. EP application 1028105, Hanselmann, Paul & Hildebrand, Stefan, "Process for the preparation of cyanoacetic esters", published 2000-08-16, assigned to Lonza AG
  4. EP patent 1208081, Hanselmann, Paul & Hildebrand, Stefan, "Method for producing cyanoacetic acid esters", issued 2004-04-14, assigned to Lonza AG
  5. 1 2 Record of CAS RN 105-56-6 in the GESTIS Substance Database of the IFA, accessed on 3. März 2011
  6. Stull, D.R. (1947). "Vapor Pressure of Pure Substances Organic Compounds". Ind. Eng. Chem. 39 (4): 517–540. doi:10.1021/ie50448a022.
  7. 1 2 3 Khodzhaeva, M.G.; Bugakov, Yu.V.; Ismailov, T.S.: Heat capacity and thermodynamic functions of ethyl cyanoacetate in Khim.-Farm. Zhur. 21 (1987) 760-762, DOI:10.1007/BF00872889.
  8. Dorokhov, V. A.; Baranin, S. V.; Dib, A.; Bogdanov, V. S. (1992). "'Codimers' of N-(pyrid-2-yl) amides and ethyl cyanoacetate". Russ. Chem. Bulletin. 41 (2): 287–291. doi:10.1007/bf00869516.
  9. Zheng, Shuyan; Yu, Chunhui; Shen, Zhengwu (2012). "Ethyl Cyanoacetate: A New Cyanating Agent for the Palladium-Catalyzed Cyanation of Aryl Halides". Org. Lett. 14 (14): 3644–3647. doi:10.1021/ol3014914.
  10. Mary Eagleson: Concise encyclopedia chemistry, Walter de Gruyter, Berlin - New York 1994, ISBN 3-11-011451-8.
  11. Axel Kleemann, Jürgen Engel: "Pharmazeutische Wirkstoffe", 2. Aufl., Georg Thieme, Stuttgart - New York 1982, ISBN 3-13-558402-X.
  12. Beyer-Walter: "Lehrbuch der Organischen Chemie", 24. Aufl., S. Hirzel, Stuttgart - Leipzig 2004.
  13. Avetisyan, A. A.; Vanyan, É. V.; Dangyan, M. T. (1980). "Synthesis of functionally substituted coumarins". Chem. Heterocycl. Compounds. 15 (9): 959–960. doi:10.1007/BF00473834.
  14. Harald Strittmatter, Stefan Hildbrand and Peter Pollak "Malonic Acid and Derivatives" in Ullmann's Encyclopedia of Industrial Chemistry 2007, Wiley-VCH, Weinheim. doi: 10.1002/14356007.a16_063.pub2
This article is issued from Wikipedia - version of the 10/23/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.