Fast Walsh–Hadamard transform
In computational mathematics, the Hadamard ordered fast Walsh–Hadamard transform (FWHTh) is an efficient algorithm to compute the Walsh–Hadamard transform (WHT). A naive implementation of the WHT would have a computational complexity of O(). The FWHTh requires only additions or subtractions.
The FWHTh is a divide and conquer algorithm that recursively breaks down a WHT of size into two smaller WHTs of size . This implementation follows the recursive definition of the Hadamard matrix :
The normalization factors for each stage may be grouped together or even omitted.
The sequency ordered, also known as Walsh ordered, fast Walsh–Hadamard transform, FWHTw, is obtained by computing the FWHTh as above, and then rearranging the outputs.
See also
References
- Fino, B. J.; Algazi, V. R. (1976). "Unified Matrix Treatment of the Fast Walsh–Hadamard Transform". IEEE Transactions on Computers. 25 (11): 1142–1146. doi:10.1109/TC.1976.1674569.
External links
This article is issued from Wikipedia - version of the 9/10/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.