Fault detection and isolation

Fault detection, isolation, and recovery (FDIR) is a subfield of control engineering which concerns itself with monitoring a system, identifying when a fault has occurred, and pinpointing the type of fault and its location. Two approaches can be distinguished: A direct pattern recognition of sensor readings that indicate a fault and an analysis of the discrepancy between the sensor readings and expected values, derived from some model. In the latter case, it is typical that a fault is said to be detected if the discrepancy or residual goes above a certain threshold. It is then the task of fault isolation to categorize the type of fault and its location in the machinery. Fault detection and isolation (FDI) techniques can be broadly classified into two categories. These include Model-based FDI and Signal processing based FDI.

Model-based

Example of model-based FDI logic for an actuator in an aircraft elevator control system[1]

In model-based FDI techniques some model of the system is used to decide about the occurrence of fault. The system model may be mathematical or knowledge based. Some of the model-based FDI techniques include [2] observer-based approach, parity-space approach, and parameter identification based methods. There is another trend of model-based FDI schemes, which is called set-membership methods. These methods guarantee the detection of fault under certain conditions. The main difference is that instead of finding the most likely model, these techniques omit the models, which are not compatible with data.[3]

The example shown in the figure on the right illustrates a model-based FDI technique for an aircraft elevator reactive controller through the use of a truth table and a state chart. The truth table defines how the controller reacts to detected faults, and the state chart defines how the controller switches between the different modes of operation (passive, active, standby, off, and isolated) of each actuator. For example, if a fault is detected in hydraulic system 1, then the truth table sends an event to the state chart that the left inner actuator should be turned off. One of the benefits of this model-based FDI technique is that this reactive controller can also be connected to a continuous-time model of the actuator hydraulics, allowing the study of switching transients.[4]

Signal processing based FDI

In signal processing based FDI, some mathematical or statistical operations are performed on the measurements, or some neural network is trained using measurements to extract the information about the fault.[5]

A good example of signal processing based FDI is Time Domain Reflectometry where a signal is sent down a cable or electrical line and the reflected signal is compared mathematically to original signal to identify faults. Spread Spectrum Time Domain Reflectometry, for instance, involves sending down a spread spectrum signal down a wire line to detect wire faults.[6] Several clustering methods have also been proposed to identify the novel fault and segment a given signal into normal and faulty segments.[7]

Machine fault diagnosis

Machine fault diagnosis is a field of mechanical engineering concerned with finding faults arising in machines. A particularly well developed part of it applies specifically to rotating machinery, one of the most common types encountered. To identify the most probable faults leading to failure, many methods are used for data collection, including vibration monitoring, thermal imaging, oil particle analysis, etc. Then these data are processed utilizing methods like spectral analysis, wavelet analysis, wavelet transform, short term Fourier transform, Gabor Expansion, Wigner-Ville distribution (WVD), cepstrum, bispectrum, correlation method, high resolution spectral analysis, waveform analysis (in the time domain, because spectral analysis usually concerns only frequency distribution and not phase information) and others. The results of this analysis are used in a root cause failure analysis in order to determine the original cause of the fault. For example, if a bearing fault is diagnosed, then it is likely that the bearing was not itself damaged at installation, but rather as the consequence of another installation error (e.g., misalignment) which then led to bearing damage. Diagnosing the bearing's damaged state is not enough for precision maintenance purposes. The root cause needs to be identified and remedied. If this is not done, the replacement bearing will soon wear out for the same reason and the machine will suffer more damage, remaining dangerous. Of course, the cause may also be visible as a result of the spectral analysis undertaken at the data-collection stage, but this may not always be the case.

The most common technique for detecting faults is the time-frequency analysis technique. For a rotating machine, the rotational speed of the machine (often known as the RPM), is not a constant, especially not during the start-up and shutdown stages of the machine. Even if the machine is running in the steady state, the rotational speed will vary around a steady-state mean value, and this variation depends on load and other factors. Since sound and vibration signals obtained from a rotating machine which are strongly related to its rotational speed, it can be said that they are time-variant signals in nature. These time-variant features carry the machine fault signatures. Consequently, how these features are extracted and interpreted is important to research and industrial applications.

The most common method used in signal analysis is the FFT, or Fourier Transform. The Fourier Transform and its inverse counterpart offer two perspectives to study a signal: via the time domain or via the frequency domain. The FFT-based spectrum of a time signal shows us the existence of its frequency contents. By studying these and their magnitude or phase relations, we can obtain various types of information, such as harmonics, sidebands, beat frequency, bearing fault frequency and so on. However, the FFT is only suitable for signals whose frequency contents do not change over time; however, as mentioned above, the frequency contents of the sound and vibration signals obtained from a rotating machine are very much time-dependent. For this reason, FFT-based spectra are unable to detect how the frequency contents develop over time. To be more specific, if the RPM of a machine is increasing or decreasing during its startup or shutdown period, its bandwidth in the FFT spectrum will become much wider than it would be simply for the steady state. Hence, in such a case, the harmonics are not so distinguishable in the spectrum.

The time frequency approach for machine fault diagnosis can be divided into two broad categories: linear methods and the quadratic methods. The difference is that linear transforms can be inverted to construct the time signal, thus, they are more suitable for signal processing, such as noise reduction and time-varying filtering. Although the quadratic method describes the energy distribution of a signal in the joint time frequency domain, which is useful for analysis, classification, and detection of signal features, phase information is lost in the quadratic time-frequency representation; also, the time histories cannot be reconstructed with this method.

The short-term Fourier transform (STFT) and the Gabor transform are two algorithms commonly used as linear time-frequency methods. If we consider linear time-frequency analysis to be the evolution of the conventional FFT, then quadratic time frequency analysis would be the power spectrum counterpart. Quadratic algorithms include the Gabor spectrogram, Cohen's class and the adaptive spectrogram. The main advantage of time frequency analysis is discovering the patterns of frequency changes, which usually represent the nature of the signal. As long as this pattern is identified the machine fault associated with this pattern can be identified. Another important use of time frequency analysis is the ability to filter out a particular frequency component using a time-varying filter.

Schemes of applying diagnostics

Fault diagnostics in usual industrial practice need to be applied according to guidelines. This need arises from the fact that diagnostics on their own may be capable of saving a single machine if monitoring is adequate, but it is impossible to apply them to all the equipment. The investment needed to either install continuous condition monitoring sensors on all the machinery in a factory or to check enough samples from all machinery on a regular basis would be prohibitive.

As a result, using fault diagnostics to meet industrial needs in a cost-effective way, and to reduce maintenance costs without requiring more investments than the cost of what is to be avoided in the first place, requires an effective scheme of applying them. This is the subject of maintenance, repair and operations; the different strategies include:

See also

References

  1. Jason R. Ghidella and Pieter J. Mosterman, "Requirements-Based Testing in Aircraft Control Design," Paper ID AIAA 2005-5886 in AIAA Modeling and Simulations Technologies Conference and Exhibit 2005, August 15-18, San Francisco, California, 2005.
  2. Ding, S.X., Model-based fault diagnosis techniques, Springer 2008
  3. Farshad Harirchi and Necmiye Ozay, "Model Invalidation for Switched Affine Systems with Applications to Fault and Anomaly Detection" , IFAC Conference on Analysis and Design of Hybrid Systems, 2015, Atlanta, GA
  4. Pieter J. Mosterman and Jason Ghidella, "Model Reuse for the Training of Fault Scenarios in Aerospace," in Proceedings of the AIAA Modeling and Simulation Technologies Conference, CD-ROM, paper 2004-4931, August 16 - 19, Rhode Island Convention Center, Providence, RI, 2004.
  5. Liu, Jie (2012). "Shannon wavelet spectrum analysis on truncated vibration signals for machine incipient fault detection". Measurement Science and Technology. 23 (5): 1–11. doi:10.1088/0957-0233/23/5/055604.
  6. Furse,Cynthia; Smith, Paul; Lo, Chet. "Spread Spectrum Sensors for Critical Fault Location on Live Wire Networks" Structural Control and Health Monitoring June 6, 2005.
  7. Bahrampour,Soheil; Moshiri, Behzad; Salahshour, Karim. "Weighted and constrained possibilistic C-means clustering for online fault detection and isolation " Applied Intelligence, Vol 35, pp. 269-284, 2011 June 6th, 2005.
This article is issued from Wikipedia - version of the 3/11/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.