Fixed-point lemma for normal functions

The fixed-point lemma for normal functions is a basic result in axiomatic set theory stating that any normal function has arbitrarily large fixed points (Levy 1979: p. 117). It was first proved by Oswald Veblen in 1908.

Background and formal statement

A normal function is a class function f from the class Ord of ordinal numbers to itself such that:

It can be shown that if f is normal then f commutes with suprema; for any nonempty set A of ordinals,

f(sup A) = sup {f(α) : αA }.

Indeed, if sup A is a successor ordinal then sup A is an element of A and the equality follows from the increasing property of f. If sup A is a limit ordinal then the equality follows from the continuous property of f.

A fixed point of a normal function is an ordinal β such that f(β) = β.

The fixed point lemma states that the class of fixed points of any normal function is nonempty and in fact is unbounded: given any ordinal α, there exists an ordinal β such that β ≥ α and f(β) = β.

The continuity of the normal function implies the class of fixed points is closed (the supremum of any subset of the class of fixed points is again a fixed point). Thus the fixed point lemma is equivalent to the statement that the fixed points of a normal function form a closed and unbounded class.

Proof

The first step of the proof is to verify that f(γ) ≥ γ for all ordinals γ and that f commutes with suprema. Given these results, inductively define an increasing sequence <αn> (n < ω) by setting α0 = α, and αn+1 = fn) for n ∈ ω. Let β = sup {αn : n ∈ ω}, so β ≥ α. Moreover, because f commutes with suprema,

f(β) = f(sup {αn : n < ω})
       = sup {fn) : n < ω}
       = sup {αn+1 : n < ω}
       = β.

The last equality follows from the fact that the sequence <αn> increases.

As an aside, it can be demonstrated that the β found in this way is the smallest fixed point greater than or equal to α.

Example application

The function f : Ord → Ord, f(α) = ωα is normal (see initial ordinal). Thus, there exists an ordinal θ such that θ = ωθ. In fact, the lemma shows that there is a closed, unbounded class of such θ.

References

This article is issued from Wikipedia - version of the 6/27/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.