Gas electron diffraction
Gas electron diffraction (GED) is one of the applications of electron diffraction techniques. The target of this method is the determination of the structure of gaseous molecules i.e. the geometrical arrangement of the atoms from which a molecule is built up.
Diffraction occurs because the wavelength of electrons accelerated by a potential of a few thousand volts is of the same order of magnitude as internuclear distances in molecules. The principle is the same as that of other electron diffraction methods such as LEED and RHEED, but the obtainable diffraction pattern is considerably weaker than those of LEED and RHEED because the density of the target is about one thousand times smaller. Since the orientation of the target molecules relative to the electron beams is random, the internuclear distance information obtained is one-dimensional. Thus only relatively simple molecules can be completely structurally characterized by electron diffraction in the gas phase. It is possible to combine information obtained from other sources, such as rotational spectra, NMR spectroscopy or high-quality quantum-mechanical calculations with electron diffraction data, if the latter are not sufficient to determine the molecule's structure completely.
The total scattering intensity in GED is given as a function of the momentum transfer, which is defined as the difference between the wave vector of the incident electron beam and that of the scattered electron beam and has the reciprocal dimension of length. The total scattering intensity is composed of two parts: the atomic scattering intensity and the molecular scattering intensity. The former decreases monotonically and contains no information about the molecular structure. The latter has sinusoidal modulations as a result of the interference of the scattering spherical waves generated by the scattering from the atoms included in the target molecule. The interferences reflect the distributions of the atoms composing the molecules, so the molecular structure is determined from this part.