Casson invariant

In 3-dimensional topology, a part of the mathematical field of geometric topology, the Casson invariant is an integer-valued invariant of oriented integral homology 3-spheres, introduced by Andrew Casson.

Kevin Walker (1992) found an extension to rational homology 3-spheres, called the Casson–Walker invariant, and Christine Lescop (1995) extended the invariant to all closed oriented 3-manifolds.

Definition

A Casson invariant is a surjective map λ from oriented integral homology 3-spheres to Z satisfying the following properties:

is independent of n. Here denotes Dehn surgery on Σ by K.

The Casson invariant is unique (with respect to the above properties) up to an overall multiplicative constant.

Properties

.
where is the coefficient of in the Alexander-Conway polynomial , and is congruent (mod 2) to the Arf invariant of K.
where

The Casson invariant as a count of representations

Informally speaking, the Casson invariant counts half the number of conjugacy classes of representations of the fundamental group of a homology 3-sphere M into the group SU(2). This can be made precise as follows.

The representation space of a compact oriented 3-manifold M is defined as where denotes the space of irreducible SU(2) representations of . For a Heegaard splitting of , the Casson invariant equals times the algebraic intersection of with .

Generalizations

Rational homology 3-spheres

Kevin Walker found an extension of the Casson invariant to rational homology 3-spheres. A Casson-Walker invariant is a surjective map λCW from oriented rational homology 3-spheres to Q satisfying the following properties:

1. λ(S3) = 0.

2. For every 1-component Dehn surgery presentation (K, μ) of an oriented rational homology sphere M′ in an oriented rational homology sphere M:

where:

where x, y are generators of H1(∂N(K), Z) such that , v = δy for an integer δ and s(p, q) is the Dedekind sum.

Note that for integer homology spheres, the Walker's normalization is twice that of Casson's: .

Compact oriented 3-manifolds

Christine Lescop defined an extension λCWL of the Casson-Walker invariant to oriented compact 3-manifolds. It is uniquely characterized by the following properties:

.
where Δ is the Alexander polynomial normalized to be symmetric and take a positive value at 1.
where γ is the oriented curve given by the intersection of two generators of and is the parallel curve to γ induced by the trivialization of the tubular neighbourhood of γ determined by .
.

The Casson–Walker–Lescop invariant has the following properties:

SU(N)

In 1990, C. Taubes showed that the SU(2) Casson invariant of a 3-homology sphere M has gauge theoretic interpretation as the Euler characteristic of , where is the space of SU(2) connections on M and is the group of gauge transformations. He led Chern–Simons invariant as a -valued Morse function on and pointed out that the SU(3) Casson invariant is important to make the invariants independent on perturbations. (Taubes (1990))

Boden and Herald (1998) defined an SU(3) Casson invariant.

References

This article is issued from Wikipedia - version of the 9/23/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.