Generalized semi-infinite programming

In mathematics, a semi-infinite programming (SIP) problem is an optimization problem with a finite number of variables and an infinite number of constraints. The constraints are typically parameterized. In a generalized semi-infinite programming (GSIP) problem, the feasible set of the parameters depends on the variables.[1]

Mathematical formulation of the problem

The problem can be stated simply as:

where

In the special case that the set : is nonempty for all GSIP can be cast as bilevel programs (Multilevel programming).

See also

References

  1. O. Stein and G. Still, On generalized semi-infinite optimization and bilevel optimization, European J. Oper. Res., 142 (2002), pp. 444-462

External links

This article is issued from Wikipedia - version of the 3/1/2011. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.