2 31 polytope


321

231

132

Rectified 321

birectified 321

Rectified 231

Rectified 132
Orthogonal projections in E7 Coxeter plane

In 7-dimensional geometry, 231 is a uniform polytope, constructed from the E7 group.

Its Coxeter symbol is 231, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node branch.

The rectified 231 is constructed by points at the mid-edges of the 231.

These polytopes are part of a family of 127 (or 271) convex uniform polytopes in 7-dimensions, made of uniform polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: .

2_31 polytope

Gosset 231 polytope
TypeUniform 7-polytope
Family2k1 polytope
Schläfli symbol {3,3,33,1}
Coxeter symbol 231
Coxeter diagram
6-faces632:
56 221
576 {35}
5-faces4788:
756 211
4032 {34}
4-faces16128:
4032 201
12096 {33}
Cells20160 {32}
Faces10080 {3}
Edges2016
Vertices126
Vertex figure131
Petrie polygonOctadecagon
Coxeter groupE7, [33,2,1]
Propertiesconvex

The 231 is composed of 126 vertices, 2016 edges, 10080 faces (Triangles), 20160 cells (tetrahedra), 16128 4-faces (3-simplexes), 4788 5-faces (756 pentacrosses, and 4032 5-simplexes), 632 6-faces (576 6-simplexes and 56 221). Its vertex figure is a 6-demicube. Its 126 vertices represent the root vectors of the simple Lie group E7.

This polytope is the vertex figure for a uniform tessellation of 7-dimensional space, 331.

Alternate names

Construction

It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram, .

Removing the node on the short branch leaves the 6-simplex. There are 576 of these facets. These facets are centered on the locations of the vertices of the 321 polytope, .

Removing the node on the end of the 3-length branch leaves the 221. There are 56 of these facets. These facets are centered on the locations of the vertices of the 132 polytope, .

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 6-demicube, 131, .

Images

Coxeter plane projections
E7 E6 / F4 B6 / A6

[18]

[12]

[7x2]
A5 D7 / B6 D6 / B5

[6]

[12/2]

[10]
D5 / B4 / A4 D4 / B3 / A2 / G2 D3 / B2 / A3

[8]

[6]

[4]

Related polytopes and honeycombs

Rectified 2_31 polytope

Rectified 231 polytope
TypeUniform 7-polytope
Family2k1 polytope
Schläfli symbol {3,3,33,1}
Coxeter symbol t1(231)
Coxeter diagram
6-faces758
5-faces10332
4-faces47880
Cells100800
Faces90720
Edges30240
Vertices2016
Vertex figure6-demicube
Petrie polygonOctadecagon
Coxeter groupE7, [33,2,1]
Propertiesconvex

The rectified 231 is a rectification of the 231 polytope, creating new vertices on the center of edge of the 231.

Alternate names

Construction

It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram, .

Removing the node on the short branch leaves the rectified 6-simplex, .

Removing the node on the end of the 2-length branch leaves the, 6-demicube, .

Removing the node on the end of the 3-length branch leaves the rectified 221, .

The vertex figure is determined by removing the ringed node and ringing the neighboring node.

Images

Coxeter plane projections
E7 E6 / F4 B6 / A6

[18]

[12]

[7x2]
A5 D7 / B6 D6 / B5

[6]

[12/2]

[10]
D5 / B4 / A4 D4 / B3 / A2 / G2 D3 / B2 / A3

[8]

[6]

[4]

See also

Notes

  1. Elte, 1912
  2. Klitzing, (x3o3o3o *c3o3o3o - laq)
  3. Klitzing, (o3x3o3o *c3o3o3o - rolaq)

References

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / E9 / E10 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
This article is issued from Wikipedia - version of the 6/29/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.