Graded-commutative ring
In algebra, a graded-commutative ring (also called a skew-commutative ring) is a graded ring that is commutative in the graded sense; that is, homogeneous elements x, y satisfy
where |x|, |y| denote the degrees of x, y.
A commutaive (non-graded) ring, with trivial grading, is a basic example. An exterior algebra is an example of a graded-commutative ring that is not commutative in the non-graded sense.
A cup product on cohomology satisfies the skew-commutative relation; hence, a cohomology ring is graded-commutative. In fact, many examples of grades-commutative rings come from algebraic topology.
References
- David Eisenbud, Commutative Algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, vol 150, Springer-Verlag, New York, 1995. ISBN 0-387-94268-8
See also
This article is issued from Wikipedia - version of the 11/29/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.