Hilbert–Schmidt theorem
In mathematical analysis, the Hilbert–Schmidt theorem, also known as the eigenfunction expansion theorem, is a fundamental result concerning compact, self-adjoint operators on Hilbert spaces. In the theory of partial differential equations, it is very useful in solving elliptic boundary value problems.
Statement of the theorem
Let (H, ⟨ , ⟩) be a real or complex Hilbert space and let A : H → H be a bounded, compact, self-adjoint operator. Then there is a sequence of non-zero real eigenvalues λi, i = 1, ..., N, with N equal to the rank of A, such that |λi| is monotonically non-increasing and, if N = +∞,
Furthermore, if each eigenvalue of A is repeated in the sequence according to its multiplicity, then there exists an orthonormal set φi, i = 1, ..., N, of corresponding eigenfunctions, i.e.
Moreover, the functions φi form an orthonormal basis for the range of A and A can be written as
References
- Renardy, Michael; Rogers, Robert C. (2004). An introduction to partial differential equations. Texts in Applied Mathematics 13 (Second ed.). New York: Springer-Verlag. p. 356. ISBN 0-387-00444-0. (Theorem 8.94)