Hypertranscendental function

A hypertranscendental function or transcendentally transcendental function is an analytic function which is not the solution of an algebraic differential equation with coefficients in Z (the integers) and with algebraic initial conditions. All hypertranscendental functions are transcendental functions.

History

The term 'transcendentally transcendental' was introduced by E. H. Moore in 1896; the term 'hypertranscendental' was introduced by D. D. Morduhai-Boltovskoi in 1914.[1][2]

Definition

One standard definition (there are slight variants) defines solutions of differential equations of the form

,

where is a polynomial with constant coefficients, as algebraically transcendental or differentially algebraic. Transcendental functions which are not algebraically transcendental are transcendentally transcendental. Hölder's theorem shows that the gamma function is in this category.[3][4][5]

Hypertranscendental functions usually arise as the solutions to functional equations, for example the gamma function.

Examples

Hypertranscendental functions

Transcendental but not hypertranscendental functions

Non-transcendental (algebraic) functions

See also

Notes

  1. D. D. Mordykhai-Boltovskoi, "On hypertranscendence of the function ξ(x, s)", Izv. Politekh. Inst. Warsaw 2:1-16 (1914), cited in Anatoly A. Karatsuba, S. M. Voronin, The Riemann Zeta-Function, 1992, ISBN 3-11-013170-6, p. 390
  2. Morduhaĭ-Boltovskoĭ (1949)
  3. Eliakim H. Moore, "Concerning Transcendentally Transcendental Functions", Mathematische Annalen 48:1-2:49-74 (1896) doi:10.1007/BF01446334
  4. R. D. Carmichael, "On Transcendentally Transcendental Functions", Transactions of the American Mathematical Society 14:3:311-319 (July 1913) full text JSTOR 1988599 doi:10.1090/S0002-9947-1913-1500949-2
  5. Lee A. Rubel, "A Survey of Transcendentally Transcendental Functions", The American Mathematical Monthly 96:777-788 (November 1989) JSTOR 2324840

References

This article is issued from Wikipedia - version of the 6/25/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.