Kōmura's theorem
In mathematics, Kōmura's theorem is a result on the differentiability of absolutely continuous Banach space-valued functions, and is a substantial generalization of Lebesgue's theorem on the differentiability of the indefinite integral, which is that Φ : [0, T] → R given by
is differentiable at t for almost every 0 < t < T when φ : [0, T] → R lies in the Lp space L1([0, T]; R).
Statement of the theorem
Let (X, || ||) be a reflexive Banach space and let φ : [0, T] → X be absolutely continuous. Then φ is (strongly) differentiable almost everywhere, the derivative φ′ lies in the Bochner space L1([0, T]; X), and, for all 0 ≤ t ≤ T,
References
- Showalter, Ralph E. (1997). Monotone operators in Banach space and nonlinear partial differential equations. Mathematical Surveys and Monographs 49. Providence, RI: American Mathematical Society. p. 105. ISBN 0-8218-0500-2. MR 1422252 (Theorem III.1.7)
This article is issued from Wikipedia - version of the 10/28/2011. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.