Lis (linear algebra library)
Stable release |
1.7.12
/ November 11, 2016 |
---|---|
Development status | Active |
Operating system | Cross-platform |
Available in | C, Fortran |
Type | Software library |
License | New BSD License |
Website | www.ssisc.org/lis/ |
Lis (Library of Iterative Solvers for linear systems, pronounced [lis]) is a scalable parallel software library for solving linear equations and eigenvalue problems that arise in the numerical solution of partial differential equations using iterative methods.[1][2][3]
Features
Lis provides facilities for:
- Automatic program configuration
- NUMA aware hybrid implementation with MPI and OpenMP
- Exchangeable dense and sparse matrix storage formats
- Basic linear algebra operations for dense and sparse matrices
- Parallel iterative methods for linear equations and eigenvalue problems
- Parallel preconditioners for iterative methods
- Quadruple precision floating point operations
- Performance analysis
- Command-line interface to solvers and benchmarks
Example
A C program to solve the linear equation Ax=b is written as follows:
#include <stdio.h>
#include "lis_config.h"
#include "lis.h"
LIS_INT main(LIS_INT argc, char* argv[])
{
LIS_MATRIX A;
LIS_VECTOR b, x;
LIS_SOLVER solver;
LIS_INT iter;
double time;
lis_initialize(&argc, &argv);
lis_matrix_create(LIS_COMM_WORLD, &A);
lis_vector_create(LIS_COMM_WORLD, &b);
lis_vector_create(LIS_COMM_WORLD, &x);
lis_input_matrix(A, argv[1]);
lis_input_vector(b, argv[2]);
lis_vector_duplicate(A, &x);
lis_solver_create(&solver);
lis_solver_set_optionC(solver);
lis_solve(A, b, x, solver);
lis_solver_get_iter(solver, &iter);
lis_solver_get_time(solver, &time);
printf("number of iterations = %d\n", iter);
printf("elapsed time = %e\n", time);
lis_output_vector(x, LIS_FMT_MM, argv[3]);
lis_solver_destroy(solver);
lis_matrix_destroy(A);
lis_vector_destroy(b);
lis_vector_destroy(x);
lis_finalize();
return 0;
}
System requirements
The installation of Lis requires a C compiler. The Fortran interface requires a Fortran compiler, and the algebraic multigrid preconditioner requires a Fortran 90 compiler.[4] For parallel computing environments, an OpenMP or MPI library is used. Both the Harwell-Boeing and Matrix Market formats are supported to import and export user data.
Packages that use Lis
See also
References
- ↑ Akira Nishida (2010). "Experience in Developing an Open Source Scalable Software Infrastructure in Japan". Computational Science and Its Applications – ICCSA 2010. Lecture Notes in Computer Science 6017. Springer. pp. 87–98. doi:10.1007/978-3-642-12165-4_36. ISBN 3-642-12164-0.
- ↑ Hisashi Kotakemori; Hidehiko Hasegawa; Tamito Kajiyama; Akira Nukada; Reiji Suda & Akira Nishida (2008). "Performance Evaluation of Parallel Sparse Matrix-Vector Products on SGI Altix 3700". OpenMP Shared Memory Parallel Programming. Lecture Notes in Computer Science 4315. Springer. pp. 153–163. doi:10.1007/978-3-540-68555-5_13. ISBN 3-540-68554-5.
- ↑ Hisashi Kotakemori; Hidehiko Hasegawa & Akira Nishida (2005). "Performance Evaluation of a Parallel Iterative Method Library using OpenMP". Proceedings of the 8th International Conference on High Performance Computing in Asia Pacific Region (HPC Asia 2005). IEEE. pp. 432–436. doi:10.1109/HPCASIA.2005.74. ISBN 0-7695-2486-9.
- ↑ Akihiro Fujii; Akira Nishida & Yoshio Oyanagi (2005). "Evaluation of Parallel Aggregate Creation Orders : Smoothed Aggregation Algebraic Multigrid Method". High Performance Computational Science and Engineering. Springer. pp. 99–122. doi:10.1007/0-387-24049-7_6. ISBN 1-4419-3684-X.
External links
- Official website
- Development repository on GitHub
- Prof. Jack Dongarra's freely available linear algebra software page
- Netlib repository (Courtesy of Netlib Project)
- Fedora packages (Courtesy of Fedora Project)
- Gentoo packages (Courtesy of Gentoo Linux Project)
- Packages for Windows (Courtesy of WHPC Project)
- Packages for Mac OS X (Courtesy of Homebrew Project)
This article is issued from Wikipedia - version of the 11/15/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.