List of misnamed theorems

This is a list of misnamed theorems in mathematics. It includes theorems (and lemmas, corollaries, conjectures, laws, and perhaps even the odd object) that are well known in mathematics, but which are not named for the originator. That is, these items on this list illustrate Stigler's law of eponymy (which is not, of course, due to Stephen Stigler, who credits Robert K Merton).

See also

References

  1. Newcomb, S. (1881). "Note on the frequency of use of the different digits in natural numbers". Amer. J. Math. The Johns Hopkins University Press. 4 (1): 39–40. doi:10.2307/2369148. JSTOR 2369148.
  2. Benford, F. (1938). "The law of anomalous numbers". Proc. Amer. Phil. Soc. 78: 551–572.
  3. Hill, Theodore P. (April 1995). "The Significant Digit Phenomenon". Am. Math. Monthly. Mathematical Association of America. 102 (4): 322–327. doi:10.2307/2974952. JSTOR 2974952.
  4. Feller, William (1968), An Introduction to Probability Theory and its Applications, Volume I (3rd ed.), Wiley, p. 69.
  5. Bix, Robert (1998). Conics and Cubics. Springer. ISBN 0-387-98401-1.
  6. Burnside, William (1897). Theory of groups of finite order. Cambridge University Press.
  7. Grattan-Guinness, Ivor (2002), Companion Encyclopaedia of the History and Philosophy of the Mathematical Sciences, Routledge, pp. 779–780, ISBN 9781134957507.
  8. Scott, Charlotte Agnas (March 1898). "On the Intersection of Plane Curves". Bull. Am. Math. Soc. 4 (6): 260–273. doi:10.1090/S0002-9904-1898-00489-5.
  9. Carl B. Boyer (1968). A History of Mathematics, 2nd edition. Wiley. p. 431.
  10. Deahna, F. (1840). "Über die Bedingungen der Integrabilität". J. Reine Angew. Math. 20: 340–350.
  11. Frobenius, Georg (1895). "Ūber das Pfaffsche Problem". J. Reine Angew. Math.: 230–315.
  12. 1 2 Samelson, Hans (June–July 2001). "Differential Forms, the Early days; or the Stories of Deahna's Theorem and of Volterra's Theorem". Am. Math. Monthly. Mathematical Association of America. 108 (6): 552–530. doi:10.2307/2695706. JSTOR 2695706.
  13. Sundström, Manya Raman (2010). "A pedagogical history of compactness". arXiv:1006.4131v1Freely accessible [math.HO].
  14. Thomas & Finney. Calculus and Analytic Geometry.
  15. Kalman, Dan (2008), "An Elementary Proof of Marden's Theorem", The American Mathematical Monthly, 115: 330–338, ISSN 0002-9890
  16. Siebeck, Jörg (1864), "Über eine neue analytische Behandlungweise der Brennpunkte", Journal für die reine und angewandte Mathematik, 64: 175–182, ISSN 0075-4102
  17. W.A. Beyer, J.D. Louck, and D. Zeilberger, A Generalization of a Curiosity that Feynman Remembered All His Life, Math. Mag. 69, 43–44, 1996.
  18. Cajori, Florian (1999). A History of Mathematics. New York: Chelsea. ISBN 0-8284-0203-5. (reprint of fifth edition, 1891).
  19. Whitford, Edward Everett (1912). The Pell Equation. New York: E. E. Whitford. This is Whitford's 1912 Ph.D. dissertation, written at Columbia University and published at his own expense in 1912.
  20. Poincaré, H. (1886–1887). "Sur les residus des intégrales doubles". Acta Math. 9: 321–380. doi:10.1007/BF02406742.
  21. Redfield, J. H. (1927). "The theory of group related distributions". Amer. J. Math. The Johns Hopkins University Press. 49 (3): 433–445. doi:10.2307/2370675. JSTOR 2370675.
  22. Pólya, G. (1936). "Algebraische Berechnung der Isomeren einiger organischer Verbindungen". Zeitschrift für Kristallographie A. 93: 414. doi:10.1524/zkri.1936.93.1.415.
  23. Read, R. C. (December 1987). "Pólya's Theorem and its Progeny". Mathematics Magazine. 60 (5): 275–282. doi:10.2307/2690407. JSTOR 2690407.
  24. Victor J. Katz (May 1979). "The History of Stokes' Theorem". Mathematics Magazine. 52 (3): 146–156. doi:10.2307/2690275. JSTOR 2690275.
  25. Campbell, Paul J. (1978). "The Origin of 'Zorn's Lemma'". Historia Mathematica. 5: 77–89. doi:10.1016/0315-0860(78)90136-2.
This article is issued from Wikipedia - version of the 11/3/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.