Emmy Noether bibliography

Emmy Noether was a German mathematician. This article lists the publications upon which her reputation is built (in part).

First epoch (1908–1919)

Index[1] Year Title and English translation[2] Journal, volume, pages Classification and notes
1 1907 Über die Bildung des Formensystems der ternären biquadratischen Form
On Complete Systems of Invariants for Ternary Biquadratic Forms
Sitzung Berichte der Physikal.-mediz. Sozietät in Erlangen, 39, 176–179 Algebraic invariants. Preliminary 4-page report on her dissertation results.
2 1908 Über die Bildung des Formensystems der ternären biquadratischen Form
On Complete Systems of Invariants for Ternary Biquadratic Forms
Journal für die reine und angewandte Mathematik, 134, 23–90 + 2 tables Algebraic invariants. Main description of her dissertation, including 331 explicitly calculated ternary invariants.
3 1910 Zur Invariantentheorie der Formen von n Variabeln
On the Theory of Invariants for Forms of n Variables§
Jahresbericht der Deutschen Mathematiker-Vereinigung, 19, 101–104 Algebraic invariants. Short communication describing the following paper.
4 1911 Zur Invariantentheorie der Formen von n Variabeln
On the Theory of Invariants for Forms of n Variables§
Journal für die reine und angewandte Mathematik, 139, 118–154 Algebraic invariants. Extension of the formal algebraic-invariant methods to forms of an arbitrary number n of variables. Noether applied these results in her publications #8 and #16.
5 1913 Rationale Funktionenkörper
Rational Function Fields§
Jahresbericht der Deutschen Mathematiker-Vereinigung, 22, 316–319 Field theory. See the following paper.
6 1915 Körper und Systeme rationaler Funktionen
Fields and Systems of Rational Functions
Mathematische Annalen, 76, 161–191 Field theory. In this and the preceding paper, Noether investigates fields and systems of rational functions of n variables, and demonstrates that they have a rational basis. In this work, she combined then-recent work of Ernst Steinitz on fields, with the methods for proving finiteness developed by David Hilbert. The methods she developed in this paper appeared again in her publication #11 on the inverse Galois problem.
7 1915 Der Endlichkeitssatz der Invarianten endlicher Gruppen
The Finiteness Theorem for Invariants of Finite Groups
Mathematische Annalen, 77, 89–92 Group theory. Proof that the invariants of a finite group are themselves finite, following the methods of David Hilbert.
8 1915 Über ganze rationale Darstellung der Invarianten eines Systems von beliebig vielen Grundformen
On an Integral Rational Representation of the Invariants of a System of Arbitrarily Many Basis Forms§
Mathematische Annalen, 77, 93–102 Applies her earlier work on n-forms.[3]
9 1916 Die allgemeinsten Bereiche aus ganzen transzendenten Zahlen
The Most General Domains of Completely Transcendental Numbers
Mathematische Annalen, 77, 103–128 (corrig., 81, 30)
10 1916 Die Funktionalgleichungen der isomorphen Abbildung
Functional Equations of the Isomorphic Mapping
Mathematische Annalen, 77, 536–545
11 1918 Gleichungen mit vorgeschriebener Gruppe
Equations with Prescribed Group
Mathematische Annalen, 78, 221–229 (corrig., 81, 30) Galois theory. Important paper on the inverse Galois problem — as assessed by B. L. van der Waerden in 1935, her work was "the most significant contribution made by anyone so far" to this still-unsolved problem.
12 1918 Invarianten beliebiger Differentialausdrücke
Invariants of Arbitrary Differential Expressions§
Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Math.-phys. Klasse, 1918, 38–44 Differential invariants. Introduces the concept of a reduced system, in which some differential invariants are reduced to algebraic invariants.
13 1918 Invariante Variationsprobleme
Invariant Variation Problems
Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Math.-phys. Klasse, 1918, 235–257 Differential invariants. Seminal paper introducing Noether's theorems, which allow differential invariants to be developed from symmetries in the calculus of variations.
14 1919 Die arithmetische Theorie der algebraischen Funktionen einer Veränderlichen in ihrer Beziehung zu den übrigen Theorien und zu der Zahlkörpertheorie
The Arithmetic Theory of Algebraic Functions of One Variable in its Relationship to the Other Theories and to Number Field Theory§
Jahresbericht der Deutschen Mathematiker-Vereinigung, 28 (Abt. 1), 182–203
15 1919 Die Endlichkeit des Systems der ganzzahligen Invarianten binärer Formen
A Proof of Finiteness for Integral Binary Invariants
Nachrichte der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Math.-phys. Klasse, 1919, 138–156 Algebraic invariants. Proof that the integral invariants of binary forms are themselves finite. Similar to publication #7, this paper is devoted to the research area of Hilbert.
16 1920 Zur Reihenentwicklung in der Formentheorie
On Series Expansions in the Theory of Forms§
Mathematische Annalen, 81, 25–30 Another application of her work in publication #4 on the algebraic invariants of forms with n variables.

Second epoch (1920–1926)

In the second epoch, Noether turned her attention to the theory of rings. With her paper Moduln in nichtkommutativen Bereichen, insbesondere aus Differential- und Differenzenausdrücken, Hermann Weyl states, "It is here for the first time that the Emmy Noether appears whom we all know, and who changed the face of algebra by her work."

Index[1] Year Title and English translation[2] Journal, volume, pages Classification and notes
17 1920 Moduln in nichtkommutativen Bereichen, insbesondere aus Differential- und Differenzenausdrücken
Modules in Non-commutative Domains, especially Those Composed of Differential and Difference Expressions§
Mathematische Zeitschrift, 8, 1–35 Ideals and modules. Written with W. Schmeidler. Seminal paper that introduces the concepts of left and right ideals, and develops various ideas of modules: direct sums and intersections, residue class modules and isomorphy of modules. First use of the exchange method for proving uniqueness, and first representation of modules as intersections obeying an ascending chain condition.
18 1921 Über eine Arbeit des im Kriege gefallenen K. Hentzelt zur Eliminationstheorie[4]
On a Work on Elimination Theory by K. Hentzelt, who Fell in the War§
Jahresbericht der Deutschen Mathematiker-Vereinigung, 30 (Abt. 2), 101 Elimination theory. Preliminary report of the dissertation of Kurt Hentzelt, who died during World War I. The full description of Hentzelt's work came in publication #22.
19 1921 Idealtheorie in Ringbereichen
The Theory of Ideals in Ring Domains§
Mathematische Annalen, 83, 24–66 Ideals. Considered by many mathematicians to be Noether's most important paper. In it, Noether shows the equivalence of the ascending chain condition with previous concepts such as Hilbert's theorem of a finite ideal basis. She also shows that any ideal that satisfies this condition can be represented as an intersection of primary ideals, which are a generalization of the einartiges Ideal defined by Richard Dedekind. Noether also defines irreducible ideals and proves four uniqueness theorems by the exchange method, as in publication #17.
20 1922 Ein algebraisches Kriterium für absolute Irreduzibilität
An Algebraic Criterion for Absolute Irreducibility§
Mathematische Annalen, 85, 26–33
21 1922 Formale Variationsrechnung und Differentialinvarianten
Formal Calculus of Variations and Differential Invariants§
Encyklopädie der math. Wiss., III, 3, E, 68–71 (in: R. Weitzenböck, Differentialinvarianten)
22 1923 Zur Theorie der Polynomideale und Resultanten
On the Theory of Polynomial Ideals and Resultants§
Mathematische Annalen, 88, 53–79 Elimination theory. Based on the dissertation of Kurt Hentzelt, who died before this paper was presented. In this work, and in publications #24 and #25, Noether subsumes elimination theory within her general theory of ideals.
23 1923 Algebraische und Differentialinvarianten
Algebraic and Differential Invariants§
Jahresbericht der Deutschen Mathematiker-Vereinigung, 32, 177–184
24 1923 Eliminationstheorie und allgemeine Idealtheorie
Elimination Theory and the General Ideal Theory§
Mathematische Annalen, 90, 229–261 Elimination theory. Based on the dissertation of Kurt Hentzelt, who died before this paper was presented. In this work, and in publications #24 and #25, Noether subsumes elimination theory within her general theory of ideals.
25 1924 Eliminationstheorie und Idealtheorie
Elimination Theory and Ideal Theory§
Jahresbericht der Deutschen Mathematiker-Vereinigung, 33, 116–120 Elimination theory. Based on the dissertation of Kurt Hentzelt, who died before this paper was presented. In this work, and in publications #24 and #25, Noether subsumes elimination theory within her general theory of ideals. She developed a final proof during a lecture in 1923/1924. When her colleague van der Waerden developed the same proof independently (but working from her publications), Noether allowed him to publish.
26 1924 Abstrakter Aufbau der Idealtheorie im algebraischen Zahlkörper[5]
Abstract Structure of the Theory of Ideals in Algebraic Number Fields§
Jahresbericht der Deutschen Mathematiker-Vereinigung, 33, 102
27 1925 Hilbertsche Anzahlen in der Idealtheorie[4]
Hilbert Counts in the Theory of Ideals§
Jahresbericht der Deutschen Mathematiker-Vereinigung, 34 (Abt. 2), 101
28 1926 Ableitung der Elementarteilertheorie aus der Gruppentheorie[6]
Derivation of the Theory of Elementary Divisors from Group Theory§
Jahresbericht der Deutschen Mathematiker-Vereinigung, 34 (Abt. 2), 104
29 1925 Gruppencharaktere und Idealtheorie[7]
Group Characters and the Theory of Ideals§
Jahresbericht der Deutschen Mathematiker-Vereinigung, 34 (Abt. 2), 144 Group representations, modules and ideals. First of four papers showing the close connection between these three subjects. See also publications #32, #33, and #35.
30 1926 Der Endlichkeitssatz der Invarianten endlicher linearer Gruppen der Charakteristik p
Proof of the Finiteness of the Invariants of Finite Linear Groups of Characteristic p§
Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Math.-phys. Klasse, 1926, 28–35 By applying ascending and descending chain conditions to finite extensions of a ring, Noether shows that the algebraic invariants of a finite group are finitely generated even in positive characteristic.
31 1926 Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionenkörpern
Abstract Structure of the Theory of Ideals in Algebraic Number Fields and Function Fields§
Mathematische Annalen, 96, 26–61 Ideals. Seminal paper in which Noether determined the minimal set of conditions required that a primary ideal be representable as a power of prime ideals, as Richard Dedekind had done for algebraic numbers. Three conditions were required: an ascending chain condition, a dimension condition, and the condition that the ring be integrally closed.

Third epoch (1927–1935)

In the third epoch, Emmy Noether focused on non-commutative algebras, and unified much earlier work on the representation theory of groups.

Index[1] Year Title and English translation[2] Journal, volume, pages Classification and notes
32 1927 Der Diskriminantensatz für die Ordnungen eines algebraischen Zahl- oder Funktionenkörpers
The Discriminant theorem for the Orders of an Algebraic Number Field or Function Field§
Journal für die reine und angewandte Mathematik, 157, 82–104 Group representations, modules and ideals. Second of four papers showing the close connection between these three subjects. See also publications #29, #33, and #35.
33 1927 Über minimale Zerfällungskörper irreduzibler Darstellungen
On the Minimum Splitting Fields of Irreducible Representations§
Sitzungsberichte der Preussischen Akademie der Wissenschaften, 1927, 221–228 Group representations, modules and ideals. Written with R. Brauer. Third of four papers showing the close connection between these three subjects. See also publications #29, #32, and #35. This paper shows that the splitting fields of a division algebra are embedded in the algebra itself; the splitting fields are maximal commutative subfields either over the algebra, or over a full matrix ring over the algebra.
34 1928 Hyperkomplexe Größen und Darstellungstheorie, in arithmetischer Auffassung
Hypercomplex Quantities and the Theory of Representations, from an Arithmetic Perspective§
Atti Congresso Bologna, 2, 71–73 Group representations, modules and ideals. Synopsis of her papers showing the close connection between these three subjects. See also publications #29, #32, #33, and #35.
35 1929 Hyperkomplexe Größen und Darstellungstheorie
Hypercomplex Quantities and the Theory of Representations
Mathematische Zeitschrift, 30, 641–692 Group representations, modules and ideals. Final paper of four showing the close connection between these three subjects. See also publications #29, #32, and #33.
36 1929 Über Maximalbereiche von ganzzahligen Funktionen
On the Maximal Domains of Integral Functions§
Rec. Soc. Math. Moscou, 36, 65–72
37 1929
Differents and Ideal Differentiation§
Jahresbericht der Deutschen Mathematiker-Vereinigung, 39 (Abt. 2), 17
38 1932 Normalbasis bei Körpern ohne höhere Verzweigung
Normal Basis in Fields without Higher Ramification§
Journal für die reine und angewandte Mathematik, 167, 147–152
39 1932 Beweis eines Hauptsatzes in der Theorie der Algebren
Proof of a Main Theorem in the Theory of Algebras§
Journal für die reine und angewandte Mathematik, 167, 399–404 Written with R. Brauer and H. Hasse.
40 1932 Hyperkomplexe Systeme in ihren Beziehungen zur kommutativen Algebra und zur Zahlentheorie
Hypercomplex Systems in Their Relationship to Commutative Algebra and to Number Theory§
Verhandl. Internat. Math. Kongress Zürich 1, 189–194
41 1933 Nichtkommutative Algebren
Non-commutative Algebras§
Mathematische Zeitschrift, 37, 514–541
42 1933 Der Hauptgeschlechtsatz für relativ-galoissche Zahlkörper
The Principal Genus Theorem for Relatively Galois Fields of Numbers§
Mathematische Annalen, 108, 411–419
43 1934 Zerfallende verschränkte Produkte und ihre Maximalordnungen, Exposés mathématiques publiés à la mémoire de J. Herbrand IV
Decomposing Crossed Products and Their Maximal Orders, in memory of J. Herbrand IV§
Actualités scient. et industr., 148
44 1950 Idealdifferentiation und Differente
Differents and Ideal Differentiation§
Journal für die reine und angewandte Mathematik, 188, 1–21

References

  1. 1 2 3 These Index numbers are used for cross-referencing in the "Classification and notes" column. The numbers are taken from the Brewer and Smith reference cited in the Bibliography, pp. 175–177.
  2. 1 2 3 The translations shown in black are taken from the Kimberling source. Unofficial translations are given in purple font.
  3. vdW, p. 102
  4. 1 2 Scroll forward to page 101.
  5. Scroll forward to page 102.
  6. Scroll forward to page 104.
  7. Scroll forward to page 144.

Bibliography

External links

This article is issued from Wikipedia - version of the 10/30/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.