List of sequenced plant genomes
This list of sequenced plant genomes contains plant species known to have publicly available complete genome sequences that have been assembled, annotated and published. Unassembled genomes are not included, nor are organelle only sequences. For all kingdoms, see the list of sequenced genomes.
Algae
Unicellular photosynthetic eukaryotes.
Organism strain | Clade | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status | Links |
---|---|---|---|---|---|---|---|---|
Cyanophora paradoxa | Glaucophyte | Rutgers University[1] | 2012[1] | |||||
Bathycoccus prasinos BBAN7 | Green algae | Comparative analysis | 15 Mb | Joint Genome Institute | 2012[2] | |||
Chlamydomonas reinhardtii CC-503 cw92 mt+ | Green algae | Model organism | 111 Mb | 17,737 | University of California at Los Angeles[3] | 2007 | "Chlamydomonas reinhardtii". National Center for Biotechnology Information (NCBI). ENA GCA_000002595 | |
Chlorella variabilis NC64A | Green algae | 2010[4] | ||||||
Coccomyxa subellipsoidea sp. C-169 | Green algae | Model biofuel | Joint Genome Institute | 2007[5] | ||||
Dunaliella salina CCAP19/18 | Green algae | Halophilic, biofuel and beta-carotene production | Joint Genome Institute | Organelle genomes complete,[6] nuclear genome in progress | ||||
Micromonas pusilla CCMP1545 | Green algae | Marine phytoplankton | Joint Genome Institute | 2007[7][8] | ||||
Micromonas pusilla RCC299/NOUM17 | Green algae | Marine phytoplankton | Joint Genome Institute | 2007[8][9] | ||||
Ostreococcus lucimarinus CCE9901 | Green algae | Simple eukaryote, small genome | 13.2 Mb | 7,796 | 2007[10] | |||
Ostreococcus tauri OTH95 | Green algae | Simple eukaryote, small genome | 2006[11] | |||||
Ostreococcus sp. RCC809 | Green algae | 7,773 | Joint Genome Institute | 2008[12] | ||||
Volvox carteri | Green algae | Multicellular alga, model organism | ~131.2 Mb | 14,971 | 2010[13] | |||
Chondrus crispus | Red algae | 105 Mb | 9,606 | Genoscope/Station Biologique de Roscoff | 2013[14] | |||
Cyanidioschyzon merolae Strain:10D | Red algae | Photo-autotrophic | 16.73 Mb | 5,017 | 2004,[15] 2007 [16] | |||
Galdieria sulphuraria | Red algae | Thermo-acidophilic (extremophile) | 13.7 Mb | 6,623 | 2005[17] 2005 [18] 2013 [19] | |||
Porphyridium purpureum | Red algae | 19.7 Mb | 8,355 | 2013 [20] | ||||
Pyropia yezoensis | Red algae | 43 Mb | 10,327 | 2013 [21] | ||||
Ectocarpus siliculosus | Brown algae (Heterokontophyta) | distantly related to plants | Station Biologique de Roscoff | 2010[22] |
Bryophytes
Organism strain | Division | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|
Physcomitrella patens ssp. patens str. Gransden 2004 | Bryophytes | Early diverging land plant | 2008[23] |
Higher plants (vascular plants)
Organism strain | Division | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|
Selaginella moellendorffii | Lycopodiophyta | Model organism | 2011[24][25] |
Angiosperms
Amborellales
Organism strain | Family | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|
Amborella trichopoda | Amborellaceae | Basal angiosperm | 2013[26][27] |
Eudicots
Ranunculales
Organism strain | Family | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|
Aquilegia caerulea | Ranunculaceae | Basal eudicot | Unpublished[28] |
Proteales
Organism strain | Family | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|
Nelumbo nucifera | Nelumbonaceae | Basal eudicot | 2013[29] |
Caryophyllales
Organism strain | Family | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|
Beta vulgaris (sugar beet) | Chenopodiaceae | Crop plant | 714–758 Mbp | 27,421 | 2013[30] |
Rosids
Organism strain | Family | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|
Betula nana (dwarf birch) | Betulaceae | Arctic shrub | 450 Mbp | QMUL/SBCS | 2013[31] | ||
Aethionema arabicum | Brassicaceae | Comparative analysis of crucifer genomes | 2013[32] | ||||
Arabidopsis lyrata | Brassicaceae | model plant | 2011[33] | ||||
Arabidopsis thaliana Ecotype:Columbia | Brassicaceae | Model plant | 135 Mbp | 2000[34] | |||
Brassica rapa (Chinese cabbage) | Brassicaceae | Assorted crops and model organism | 2011[35] | ||||
Capsella rubella | Brassicaceae | Close relative of Arabidopsis thaliana | 130Mbp | 26,521 | JGI | 2013?[36] 2013[37] | |
Eutrema salsugineum | Brassicaceae | A relative of arabidopsis with high salt tolerance | 240Mbp | 26,351 | JGI | 2013[38] | |
Eutrema parvulum | Brassicaceae | Comparative analysis of crucifer genomes | 2013[32] | ||||
Leavenworthia alabamica | Brassicaceae | Comparative analysis of crucifer genomes | 2013[32] | ||||
Sisymbrium irio | Brassicaceae | Comparative analysis of crucifer genomes | 2013[32] | ||||
Thellungiella parvula | Brassicaceae | A relative of arabidopsis with high salt tolerance | 2011[39] | ||||
Cannabis sativa (hemp) | Cannabaceae | Hemp and marijuana production | ca 820Mbp | 30,074 based on transcriptome assembly and clustering | 2011[40] | Illumina/454
scaffold N50 16.2 Kbp | |
Carica papaya (papaya) | Caricaceae | Fruit crop | 372Mbp | 28,629 | 2008[41] | contig N50 11kbp
scaffold N50 1Mbp total coverage ~3x (Sanger) 92.1% unigenes mapped 235Mbp anchored (of this 161Mbp also oriented) | |
Kalanchoe | Crassulaceae | 2013?[42] | |||||
Citrullus lanatus (watermelon) | Cucurbitaceae | Vegetable crop | ca 425Mbp | 23,440 | BGI | 2012[43] | Illumina
coverage 108.6x contig N50 26.38 kbp Scaffold N50 2.38 Mbp genome covered 83.2% ~97% ESTs mapped |
Cucumis melo (Muskmelon) DHL92 | Cucurbitaceae | Vegetable crop | 450Mbp | 27,427 | 2012[44] | 454
13.5x coverage contig N50: 18.1kbp scaffold N50: 4.677 Mbp WGS | |
Cucumis sativus (cucumber) 'Chinese long' inbred line 9930 | Cucurbitaceae | Vegetable crop | 350 Mbp (Kmer depth) 367 Mbp (flow cytometry) | 26,682 | 2009[45] | contig N50 19.8kbp
scaffold N50 1,140kbp total coverage ~72.2 (Sanger + Ilumina) 96.8% unigenes mapped 72.8% of the genome anchored | |
Hevea brasiliensis (rubber tree) | Euphorbiaceae | the most economically important member of the genus Hevea | 2013[46] | ||||
Jatropha curcas Palawan | Euphorbiaceae | bio-diesel crop | 2010[47] | ||||
Manihot esculenta (Cassava) | Euphorbiaceae | Humanitarian importance | ~760Mb | 30,666 | JGI | 2012[48] | |
Ricinus communis (Castor bean) | Euphorbiaceae | Oilseed crop | 320Mbp | 31,237 | JCVI | 2010[49] | Sanger coverage~4.6x contig N50 21.1 kbp scaffold N50 496.5kbp |
Cajanus cajan (Pigeon pea) var. Asha | Fabaceae | Model legume | 2012[50][51] | ||||
Arachis duranensis (A genome diploid wild peanut) accession V14167 | Fabaceae | Wild ancestor of peanut, an oilseed and grain legume crop | 2016[52] | Illumina 154x coverage, contig N50 22 kbp, scaffold N50 948 kbp | |||
Arachis ipaensis (B genome diploid wild peanut) accession K30076 | Fabaceae | Wild ancestor of peanut, an oilseed and grain legume crop | 2016[52] | Illumina 163x coverage, contig N50 23 kbp, scaffold N50 5,343 kbp | |||
Cicer arietinum (chickpea) | Fabaceae | filling | 2013[53] | ||||
Cicer arietinum L. (chickpea) | Fabaceae | 2013[54] | |||||
Glycine max (soybean) var. Williams 82 | Fabaceae | Protein and oil crop | 1115Mbp | 46,430 | 2010[55] | Contig N50:189.4kbp
Scaffold N50:47.8Mbp Sanger coverage ~8x WGS 955.1 Mbp assembled | |
Lotus japonicus (Bird's-foot Trefoil) | Fabaceae | Model legume | 2008[56] | ||||
Medicago truncatula (Barrel Medic) | Fabaceae | Model legume | 2011[57] | ||||
Phaseolus vulgaris (common bean) | Fabaceae | Model bean | 520Mbp | 31,638 | JGI | 2013?[58] | |
Linum usitatissimum (flax) | Linaceae | Crop | ~350Mbp | 43,384 | BGI et al. | 2012 [59] | |
Gossypium raimondii | Malvaceae | One of the putative progenitor species of tetraploid cotton | 2013?[60] | ||||
Theobroma cacao (cocoa tree) | Malvaceae | Flavouring crop | 2010[61][62] | ||||
Theobroma cacao (cocoa tree) cv. Matina 1-6 | Malvaceae | Most widely cultivated cacao type | 2013[63] | ||||
Azadirachta indica (neem) | Meliaceae | Source of number of Terpenoids, including biopesticide azadirachtin, Used in Traditional Medicine | 364 Mbp | ~20000 | GANIT Labs | 2012[64] and 2011[65] | Illumina GAIIx, scaffold N50 of 452028bp, Transcriptome data from Shoot, Root, Leaf, Flower and Seed |
Eucalyptus grandis (Rose gum) | Myrtaceae | Fibre and timber crop | 2011[66] | ||||
Fragaria vesca (wild strawberry) | Rosaceae | Fruit crop | 240Mbp | 34,809 | 2011[67] | scaffold N50: 1.3 Mbp
454/Illumina/solid 39x coverage WGS | |
Malus domestica (apple) "Golden Delicious" | Rosaceae | Fruit crop | ~742.3Mbp | 57,386 | 2010[68] | contig N50 13.4 (kbp??)
scafold N50 1,542.7 (kbp??) total coverage ~16.9x (Sanger + 454) 71.2% anchored | |
Prunus amygdalus (almond) | Rosaceae | Fruit crop | 2013?[69] | ||||
Prunus avium (sweet cherry) cv. Stella | Rosaceae | Fruit crop | 2013?[69] | ||||
Prunus mume (Chinese plum or Japanese apricot) | Rosaceae | Fruit crop | 2012[70] | ||||
Prunus persica (peach) | Rosaceae | Fruit crop | 265Mbp | 27,852 | 2013[71] | Sanger coverage:8.47x
WGS ca 99% ESTs mapped 215.9 Mbp in pseudomolecules | |
Pyrus bretschneideri (ya pear or Chinese white pear) cv. Dangshansuli | Rosaceae | Fruit crop | 2012[72] | ||||
Pyrus communis (European pear) cv. Doyenne du Comice | Rosaceae | Fruit crop | 2013?[69] | ||||
Citrus clementina (Clementine) | Rutaceae | Fruit crop | 2013?[73] | ||||
Citrus sinensis (Sweet orange) | Rutaceae | Fruit crop | 2013?,[73] 2013[74] | ||||
Populus trichocarpa (poplar) | Salicaceae | Carbon sequestration, model tree, timber | 510 Mbp (cytogenetic) 485 Mbp (coverage) | 73,013 [Phytozome] | 2006[75] | Scaffold N50: 19.5 Mbp
Contig N50:552.8 Kbp [phytozome] WGS >=95 % cDNA found | |
Vitis vinifera (grape) genotype PN40024 | Vitaceae | fruit crop | 2007[76] |
Asterids
Organism strain | Family | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|
Mimulus guttatus | Scrophulariaceae | model system for studying ecological and evolutionary genetics | ca 430Mbp | 26,718 | JGI | 2013?[77] | Scaffold N50 = 1.1 Mbp
Contig N50 = 45.5 Kbp |
Solanum lycopersicum (tomato) cv. Heinz 1706 | Solanaceae | Food crop | ca 900Mbp | 34,727 | SGN | 2011[78] 2012[79] | Sanger/454/Illumina/Solid
Pseudomolecules spanning 91 scaffolds (760Mbp of which 594Mbp have been oriented ) over 98% ESTs mappable |
Solanum pimpinellifolium (Currant Tomato) | Solanaceae | closest wild relative to tomato | 2012[79] | Illumina
contig N50: 5100bp ~40x coverage | |||
Solanum tuberosum (potato) | Solanaceae | Food crop | 844 Mbp kmer (856 Mbp) | 39,031 | PGSC | 2011[80] | Sanger/454/Illumina
79.2x coverage contig N50: 31,429bp scaffold N50: 1,318,511bp |
Solanum commersonii (commerson's nightshade) | Solanaceae | Wild potato relative | 838 Mbp kmer (840 Mbp) | 37,662 | UNINA, UMN, UNIVR, Sequentia Biotech, CGR | 2015[81] | Illumina
105x coverage contig N50: 6,506bp scaffold N50: 44,298bp |
Nicotiana benthamiana | Solanaceae | Close relative of tobacco | ca 3Gbp | 2012[82] | Illumina
63x coverage contig N50: 16,480bp scaffold N50:89,778bp >93% unigenes found | ||
Nicotiana sylvestris (Tobacco plant) | Solanaceae | model system for studies of terpenoid production | 2.636Gbp | Philip Morris International | 2013[83] | 94x coverage
scaffold N50: 79.7 kbp 194kbp superscaffolds using physical Nicotiana map | |
Nicotiana tomentosiformis | Solanaceae | Tobacco progenitor | 2.682 Gb | Philip Morris International | 2013[83] | 146x coverage
scaffold N50: 82.6 kb 166kbp superscaffolds using physical Nicotiana map | |
Capsicum annuum (Pepper)
(a) cv. CM334 (b) cv. Zunla-1 |
Solanaceae | Food crop | ~3.48 Gbp | (a) 34,903
(b) 35,336 |
(a) 2014[84]
(b) 2014[85] |
N50 contig: (a) 30.0 kb (b) 55.4 kb
N50 scaffold: (a) 2.47 Mb (b) 1.23 Mb | |
Capsicum annuum var. glabriusculum (Chiltepin) | Solanaceae | Progenitor of cultivated pepper | ~3.48 Gbp | 34,476 | 2014[85] | N50 contig: 52.2 kb
N50 scaffold: 0.45 Mb | |
Petunia | Solanaceae | Economically important flower | 2011[86] | ||||
Utricularia gibba (humped bladderwort) | Lentibulariaceae | model system for studying genome size evolution; a carnivorous plant | 81.87 Mb | 28,494 | LANGEBIO, CINVESTAV | 2013[87] | Scaffold N50: 80.839 Kb |
Monocots
Grasses
Organism strain | Family | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|
Setaria italica (Foxtail millet) | Poaceae | Model of C4 metabolism | 2012[88] | ||||
Aegilops tauschii (Tausch's goatgrass) | Poaceae | bread wheat D-genome progenitor | ca 4.36Gb | BGI | 2013[89] | Non-repetitive sequence assembled | |
Brachypodium distachyon (purple false brome) | Poaceae | Model monocot | 2010[90] | ||||
Hordeum vulgare (barley) | Poaceae | Model of ecological adoption | IBSC | 2012[91] | |||
Oryza brachyantha (wild rice) | Poaceae | Disease resistant wild relative of rice | 2013[92] | ||||
Oryza glaberrima (African rice) var CG14 | Poaceae | West-African species of rice | 2010[93] | ||||
Oryza rufipogon (red rice) | Poaceae | Ancestor to Oryza sativa | 406 Mb | 37,071 | SIBS | 2012 [94] | Illumina HiSeq2000
100x coverage |
Oryza sativa (short grain rice) ssp indica | Poaceae | Crop and model cereal | 2002[95] | ||||
Oryza sativa (long grain rice) ssp japonica | Poaceae | Crop and model cereal | 2002[96] | ||||
Panicum virgatum (switchgrass) | Poaceae | biofuel | 2013?[97] | ||||
Phyllostachys edulis (moso bamboo) | Poaceae | 2013[98] | |||||
Sorghum bicolor genotype BTx623 | Poaceae | Crop | ca 730Mbp | 34,496 | 2009[99] | contig N50:195.4kbp
scaffold N50: 62.4Mbp Sanger, 8.5x coverage WGS | |
Triticum aestivum (bread wheat) | Poaceae | 20% of global nutrition | 2012[100] | Non-repetitive sequence assembled
Roche 454/Illumina WGS | |||
Triticum urartu | Poaceae | Bread wheat A-genome progenitor | ca 4.94Gb | BGI | 2013[101] | Non-repetitive sequence assembled
Illumina WGS | |
Zea mays (maize) ssp mays B73 | Poaceae | Cereal crop | 2,300Mbp | 39,656[102] | 2009[103] | contig N50 40kbp
scaffold N50: 76kbp Sanger, 4-6x coverage per BAC |
Other non-grasses
Organism strain | Family | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|
Musa acuminata (Banana) | Musaceae | A-genome of modern banana cultivars | 523 Mbp | 36,542 | 2012[104] | N50 contig: 43.1 kb
N50 scaffold: 1.3 Mb | |
Musa balbisiana (Wild banana) | Musaceae | B-genome of modern banana cultivars | 438 Mbp | 36,638 | 2013[105] | N50 contig: 7.9 kb | |
Phoenix dactylifera (Date palm) | Arecaceae | Woody crop in arid regions | 658 Mbp | 28,800 | 2011[106] | N50 contig: 6.4 kb | |
Elaeis guineensis (African oil palm) | Arecaceae | Oil-bearing crop | ~1800 Mbp | 34,800 | 2013[107] | N50 scaffold: 1.27 Mb | |
Spirodela polyrhiza (Greater duckweed) | Araceae | Aquatic plant | 158 Mbp | 19,623 | 2014[108] | N50 scaffold: 3.76 Mb |
Gymnosperm
Organism strain | Family | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|
Picea abies (Norway spruce) | Pinaceae | Timber, tonewood, ornamental such as Christmas tree | 20 Gb | 28,354 | Umeå Plant Science Centre / SciLifeLab, Sweden | 2013[109] | |
Picea glauca (White spruce) | Pinaceae | Timber, Pulp | 20.8 Gb | 56,064 | Institutional Collaboration | 2013[110] | |
Pinus taeda (Loblolly pine) | Pinaceae | Timber | 20.15 Gb | 50,172 | Institutional collaboration | 2014[111][112][113] | N50 scaffold size: 66.9 kbp |
Uncategorised things to add...
the genome from Galdieria sulphuraria has finally been published (Schönknecht, G., W.-H. Chen, et al. (2013). "Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote." Science 339(6124): 1207-1210.) Genome size is 13.7 MB, and 6623 protein-coding genes were annotated.
Nakamura et al. published the genome sequence for Pyropia yezoensis (Nakamura, Y., N. Sasaki, et al. (2013). "The first symbiont-free genome sequence of marine red alga, Susabi-nori Pyropia yezoensis." PLoS ONE 8(3): e57122.).
Bhattacharya et al. published the genome of Porphyridium purpureum (Bhattacharya, D., D. C. Price, et al. (2013). "Genome of the red alga Porphyridium purpureum." Nature Communications 4.)
Press releases announcing sequencing
Not meeting criteria of the first paragraph of this article in being nearly full sequences with high quality, published, assembled and publicly available. This list includes species where sequences are announced in press releases or websites, but not in a data-rich publication in a refereed Journal with doi.
- Brassica napus, oil plant (2009[114])
- Elaeis guineensis, oil palm (2007[115])
- Corchorus olitorius, fibre plant (2010[116][117][118])
- Fraxinus excelsior, European ash (2013 draft [119][120])
See also
- http://plabipd.de/timeline_view.ep
- http://genomevolution.org/wiki/index.php/Sequenced_plant_genomes
- List of sequenced eukaryotic genomes
- List of sequenced animal genomes
- List of sequenced archaeal genomes
- List of sequenced bacterial genomes
- List of sequenced fungi genomes
- List of sequenced plastomes
- List of sequenced protist genomes
References
- 1 2 Price DC, Chan CX, Yoon HS; et al. (2012). "Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants". Science. 335 (6070): 843–847. Bibcode:2012Sci...335..843P. doi:10.1126/science.1213561. PMID 22344442.
- ↑ Genome Biology | Full text | Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage
- ↑ Merchant; Prochnik, SE; Vallon, O; Harris, EH; Karpowicz, SJ; Witman, GB; Terry, A; Salamov, A; et al. (2007). "The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions". Science. 318 (5848): 245–250. Bibcode:2007Sci...318..245M. doi:10.1126/science.1143609. PMC 2875087. PMID 17932292.
- ↑ Blanc G, Duncan G, Agarkova I, et al. (September 2010). "The Chlorella variabilis NC64A genome revals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex". Plant Cell. 22 (9): 2943–2955. doi:10.1105/tpc.110.076406. PMC 2965543. PMID 20852019.
- ↑ Coccomyxa JGI entry
- ↑ Smith; Lee, RW; Cushman, JC; Magnuson, JK; Tran, D; Polle, JE; et al. (2010). "The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA". BMC Plant Biology. 10 (1): 83. doi:10.1186/1471-2229-10-83. PMC 3017802. PMID 20459666.
- ↑ Micromonas p.C3 JGI entry
- 1 2 Worden AZ, Lee JH, Mock T, et al. (April 10, 2009). "Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas". Science. 324 (5924): 268–272. Bibcode:2009Sci...324..268W. doi:10.1126/science.1167222. PMID 19359590.
- ↑ Micromonas p.N3 JGI entry
- ↑ Palenik, B; Grimwood, J; Aerts, A; Rouzé, P; Salamov, A; Putnam, N; Dupont, C; Jorgensen, R; et al. (2007). "The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation". Proceedings of the National Academy of Sciences of the United States of America. 104 (18): 7705–10. Bibcode:2007PNAS..104.7705P. doi:10.1073/pnas.0611046104. PMC 1863510. PMID 17460045.
- ↑ Derelle E, Ferraz C, Rombauts S, et al. (August 2006). "Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features". PNAS. 103 (31): 11647–52. Bibcode:2006PNAS..10311647D. doi:10.1073/pnas.0604795103. PMC 1544224. PMID 16868079.
- ↑ Info - Ostreococcus RCC809
- ↑ Prochnik SE, Umen J, Nedelcu AM; Umen; Nedelcu; Hallmann; Miller; Nishii; Ferris; Kuo; et al. (July 9, 2010). "Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri". Science. 329 (5988): 223–226. Bibcode:2010Sci...329..223P. doi:10.1126/science.1188800. PMC 2993248. PMID 20616280.
- ↑ Collén, J.; Porcel, B.; Carré, W.; Ball, S. G.; Chaparro, C.; Tonon, T.; Boyen, C. (2013). "Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida". Proceedings of the National Academy of Sciences. 110: 5247–5252. doi:10.1073/pnas.1221259110.
- ↑ Matsuzaki M, Misumi O, Shin-I T, et al. (April 2004). "Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D". Nature. 428 (6983): 653–7. Bibcode:2004Natur.428..653M. doi:10.1038/nature02398. PMID 15071595.
- ↑ Nozaki; et al. (2007). "A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae". BMC Biol. 5: 28. doi:10.1186/1741-7007-5-28.
- ↑ Galdieria sulphuraria Genome Project at MSU
- ↑ "Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae". Plant Physiol. 137: 460–74. February 2005. doi:10.1104/pp.104.051169. PMC 1065348. PMID 15710685.
- ↑ Schönknecht; et al. (Mar 2013). "(March 8, 2013) Gene Transfer from Bacteria and Archaea Facilitated Evolution of an Extremophilic Eukaryote". Science. 339: 1207–1210. doi:10.1126/science.1231707. PMID 23471408.
- ↑ Bhattacharya; et al. (2013). "Genome of the red alga Porphyridium purpureum". Nature Communications. 4: 1941. doi:10.1038/ncomms2931.
- ↑ Nakamura; et al. "(March 11, 2013) The First Symbiont-Free Genome Sequence of Marine Red Alga, Susabi-nori (Pyropia yezoensis)". PLoS ONE. 8 (3): e57122. doi:10.1371/journal.pone.0057122.
- ↑ Cock JM, Sterck L, Rouzé P; Sterck; Rouzé; Scornet; Allen; Amoutzias; Anthouard; Artiguenave; et al. (June 3, 2010). "The Ectocarpus genome and the independent evolution of multicellularity in brown algae". Nature. 465 (7298): 617–621. Bibcode:2010Natur.465..617C. doi:10.1038/nature09016. PMID 20520714.
- ↑ Rensing SA, Lang D, Zimmer AD, et al. (January 2008). "The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants". Science. 319 (5859): 64–9. Bibcode:2008Sci...319...64R. doi:10.1126/science.1150646. PMID 18079367.
- ↑ Banks JA, Nishiyama T, Hasebe M, et al. (20 May 2011). "The Selaginella genome identifies genetic changes associated with the evolution of vascular plants". Science. 332 (6032): 960–963. Bibcode:2011Sci...332..960B. doi:10.1126/science.1203810. PMC 3166216. PMID 21551031.
- ↑ JGI project page
- ↑ Amborella Genome Project (20 Dec 2013). "The Amborella genome and the evolution of flowering plants". Science. 342 (6165): 1241089. doi:10.1126/science.1241089. PMID 24357323.
- ↑ amborella.org
- ↑ Phytozome v9.1: Aquilegia caerulea
- ↑ Ray Ming; Robert VanBuren; Yanling Liu; Mei Yang; Yuepeng Han; et al. (10 May 2013). "Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.)". Genome Biology. 14 (5): R41. doi:10.1186/gb-2013-14-5-r41.
- ↑ Juliane C. Dohm; André E. Minoche; Daniela Holtgräwe; Salvador Capella-Gutiérrez; Falk Zakrzewski; Hakim Tafer; Oliver Rupp; Thomas Rosleff Sörensen; Ralf Stracke; Richard Reinhardt; Alexander Goesmann; Thomas Kraft; Britta Schulz; Peter F. Stadler; Thomas Schmidt; Toni Gabaldón; Hans Lehrach; Bernd Weisshaar; Heinz Himmelbauer (December 2013). "The genome of the recently domesticated crop plant sugar beet (Beta vulgaris)". Nature. 505 (7484): 546–549. doi:10.1038/nature12817.
- ↑ Wang N, Thomson M, Bodles W, et al. (2013). "Genome sequence of dwarf birch (Betula nana) and cross-species RAD markers". Molecular Ecology. 22 (11): 3098–3111. doi:10.1111/mec.12131. PMID 23167599.
- 1 2 3 4 An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions : Nature Genetics : Nature Publishing Group
- ↑ Hu T, Pattyn P, Bakker EG, et al. (April 2011). "The Arabidopsis lyrata genome sequence and the basis of rapid genome size change". Nature Genetics. 43 (5): 476–81. doi:10.1038/ng.807.
- ↑ The Arabidopsis Genome Initiative (December 2000). "Analysis of the genome sequence of the flowering plant Arabidopsis thaliana". Nature. 408 (6814): 796–815. doi:10.1038/35048692. PMID 11130711.
- ↑ Wang X, Wang H, Wang J, et al. (2011). "The genome of the mesopolypoid crop species Brassica rapa". Nature Genetics. 43: 1035–1039. doi:10.1038/ng.919. PMID 21873998.
- ↑ Phytozome v9.1: Capsella rubella
- ↑ Slotte T, et al. (2013). "The Capsella rubella genome and the genomic consequences of rapid mating system evolution.". Nature Genetics. 45 (7): 831–835. doi:10.1038/ng.2669. PMID 23749190.
- ↑ The Reference Genome of the Halophytic Plant... [Front Plant Sci. 2013] - PubMed - NCBI
- ↑ Dassanayake M, Oh DH, Haas JS, et al. (2011). "The genome of the extremophile crucifer Thellungiella parvula". Nature Genetics. 43 (9): 913–918. doi:10.1038/ng.889.
- ↑ van Bakel H, Stout JM, Cote AT, et al. (2011). "The draft genome and transcriptome of Cannabis sativa". Genome Biology. 12 (10): R102. doi:10.1186/gb-2011-12-10-r102. PMC 3359589. PMID 22014239.
- ↑ The draft genome of the transgenic tropical fruit tre... [Nature. 2008] - PubMed - NCBI
- ↑ Kalanchoe
- ↑ The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions : Nature Genetics : Nature Publishing Group
- ↑ The genome of melon (Cucumis melo L.)
- ↑ Huang S, Li R, Zhang1 Z; et al. (December 2009). "The genome of the cucumber, Cucumis sativus L". Nature Genetics. 41 (12): 1275–. doi:10.1038/ng.475. PMID 19881527.
- ↑ BMC Genomics | Full text | Draft genome sequence of the rubber tree Hevea brasiliensis
- ↑ Sato S, Hirakawa H, Isobe S, et al. (February 2011). "Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L.". DNA Research. 18 (1): 65–76. doi:10.1093/dnares/dsq030. PMC 3041505. PMID 21149391.
- ↑ Prochnik et al. (2012), J. Tropical Plant Biology
- ↑ Chan AP, Crabtree J, Zhao Q, et al. (2010). "Draft genome sequence of the oilseed species Ricinus communis". Nature Biotechnology. 28 (9): "951–956". doi:10.1038/nbt.1674.
- ↑ Nagendra K. Singh, Deepak K. Gupta, Pawan K. Jayaswal, Ajay K. Mahato, Sutapa Dutta, Sangeeta Singh, Shefali Bhutani, Vivek Dogra, Bikram P. Singh and Giriraj Kumawat; et al. (2012). "The first draft of the pigeonpea genome sequence". Journal of Plant Biochemistry and Biotechnology. 21 (1): 98–112. doi:10.1007/s13562-011-0088-8. PMC 3886394. PMID 24431589.
- ↑ Varshney RK, Chen W, Li Y, et al. (2012). "Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers". Nature Biotechnology. 30 (1): 83–89. doi:10.1038/nbt.2022. PMID 22057054.
- 1 2 Bertioli, David John; Cannon, Steven B.; Froenicke, Lutz; Huang, Guodong; Farmer, Andrew D.; Cannon, Ethalinda K. S.; Liu, Xin; Gao, Dongying; Clevenger, Josh (2016-04-01). "The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut". Nature Genetics. 48 (4): 438–446. doi:10.1038/ng.3517. ISSN 1061-4036.
- ↑ Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement : Nature Biotechnology : Nature Publishing Group
- ↑ A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.) - Jain - 2013 - The Plant Journal - Wiley Online Library
- ↑ Huang S, Li R, Zhang1 Z; et al. (10 January 2010). "Genome sequence of the palaeopolyploid soybean". Nature. 463 (12): 178–183. Bibcode:2010Natur.463..178S. doi:10.1038/nature08670. PMID 20075913.
- ↑ Sato S, Nakamura Y, Kaneko T, et al. (2008). "Genome structure of the legume, Lotus japonicus". DNA Research. 15 (4): 227–239. doi:10.1093/dnares/dsn008. PMC 2575887. PMID 18511435.
- ↑ Young ND, Debelle F, Oldroyd GE, et al. (2011). "The Medicago genome provides insight into the evolution of rizobial symbioses". Nature. 480 (7378). Bibcode:2011Natur.480..520Y. doi:10.1038/nature10625.
- ↑ Phytozome v9.1: Phaseolus vulgaris v1.0
- ↑ "The genome of flax ( Linum usitatissimum ) assembled de novo from short shotgun sequence reads". The Plant Journal. 72: 461–473. doi:10.1111/j.1365-313X.2012.05093.x.
- ↑ Phytozome v9.1: Gossypium raimondii v2.1
- ↑ Argout, Xavier; Salse, Jerome; Aury, Jean-Marc; Guiltinan, Mark J; Droc, Gaetan; Gouzy, Jerome; Allegre, Mathilde; Chaparro, Cristian; et al. (2010). "The genome of Theobroma cacao". Nature Genetics. 43 (2): 101–8. doi:10.1038/ng.736. PMID 21186351.
- ↑ Pennisi, E. (2010). "Genomics Researchers Upset by Rivals' Publicity". Science. 329 (5999): 1585. Bibcode:2010Sci...329.1585P. doi:10.1126/science.329.5999.1585. PMID 20929817.
- ↑ Genome Biology | Abstract | The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color
- ↑ BMC Genomics | Full text | A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica
- ↑ http://www.currentscience.ac.in/Volumes/101/12/1553.pdf
- ↑ Myburg, Alexander A.; Grattapaglia, Dario; Tuskan, Gerald A.; Hellsten, Uffe; Hayes, Richard D.; Grimwood, Jane; Jenkins, Jerry; Lindquist, Erika; Tice, Hope. "The genome of Eucalyptus grandis". Nature. doi:10.1038/nature13308.
- ↑ Shulaev V, Sargent DJ, Crowhurst RN, et al. (2011). "The genome of woodland strawberry (Fragaria vesca)". Nature Genetics. 43 (2): 109–116. doi:10.1038/ng.740. PMC 3326587. PMID 21186353.
- ↑ Velasco, R.; Zharkikh, A.; Affourtit, J.; Dhingra, A.; Cestaro, A.; Kalyanaraman, A.; Fontana, P.; Bhatnagar, S.; Troggio, M.; Pruss, D.; Salvi, S.; Pindo, M.; Baldi, P.; Castelletti, S.; Cavaiuolo, M.; Coppola, G.; Costa, F.; Cova, V.; Dal Ri, A.; Goremykin, V.; Komjanc, M.; Longhi, S.; Magnago, P.; Malacarne, G.; Malnoy, M.; Micheletti, D.; Moretto, M.; Perazzolli, M.; Si-Ammour, A.; Vezzulli, S. (2010). "The genome of the domesticated apple (Malus x domestica Borkh.)". Nature Genetics. 42 (10): 833–839. doi:10.1038/ng.654. PMID 20802477.
- 1 2 3 Gramene News » Blog Archive » Four Rosaceae Genomes Released
- ↑ The genome of Prunus mume : Nature Communications : Nature Publishing Group
- ↑ The International Peach Genome Initiative; et al. (2013). "The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution". Nature Genetics. 45 (5): 487–494. doi:10.1038/ng.2586. PMID 23525075.
- ↑ The genome of the pear (Pyrus bretschneideri Rehd.)
- 1 2 Phytozome v9.1: Citrus clementina
- ↑ Xu Q, et al. (2013). "The draft genome of sweet orange (Citrus sinensis)". Nature Genetics. 45 (1): 59–66. doi:10.1038/ng.2472. PMID 23179022.
- ↑ Tuskan GA, Difazio S, Jansson S, et al. (September 2006). "The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)". Science. 313 (5793): 1596–604. Bibcode:2006Sci...313.1596T. doi:10.1126/science.1128691. PMID 16973872.
- ↑ Jaillon O, Aury JM, Noel B, et al. (September 2007). "The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla". Nature. 449 (7161): 463–7. Bibcode:2007Natur.449..463J. doi:10.1038/nature06148. PMID 17721507.
- ↑ Phytozome v9.1: Mimulus guttatus
- ↑ Sol Genomics Network
- 1 2 The Tomato Genome Consortium (31 May 2012). "The tomato genome sequence provides insights into fleshy fruit evolution". Nature. 485 (7400): 635–641. Bibcode:2012Natur.485..635T. doi:10.1038/nature11119. PMC 3378239. PMID 22660326.
- ↑ Xu, X.; Xu, S.; Pan, S.; Cheng, B.; Zhang, D.; Mu, P.; Ni, G.; Zhang, S.; Yang, R.; Li, J.; Wang, G.; Orjeda, F.; Guzman, M.; Torres, R.; Lozano, O.; Ponce, D.; Martinez, G. N.; De La Cruz, S. K.; Chakrabarti, V. U.; Patil, K. G.; Skryabin, B. B.; Kuznetsov, N. V.; Ravin, T. V.; Kolganova, A. V.; Beletsky, A. V.; Mardanov, A.; Di Genova, D. M.; Bolser, D. M. A.; Martin, G.; Li, Y. (2011). "Genome sequence and analysis of the tuber crop potato". Nature. 475 (7355): 189–195. doi:10.1038/nature10158. PMID 21743474.
- ↑ Aversano R, Contaldi F, Ercolano MR, Grosso V, Iorizzo M, Tatino F, Xumerle L, Dal Molin A, Avanzato C, Ferrarini A, Delledonne M, Sanseverino W, Aiese Cigliano R, Capella-Gutierrez S, Gabaldón T, Frusciante L, Bradeen JM, Carputo D. (14 Apr 2015). "The Solanum commersonii genome sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives". The Plant Cell. 27 (4): 954–968. doi:10.1105/tpc.114.135954. PMID 25873387.
- ↑ A draft genome sequence of Nicoti... [Mol Plant Microbe Interact. 2012] - PubMed - NCBI
- 1 2 Genome Biology | Abstract | Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis
- ↑ Kim; et al. (2014). "Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species". Nature Genetics. 46 (3): 270–278. doi:10.1038/ng.2877.
- 1 2 Qin; et al. (2014). "Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization.". Proc Natl Acad Sci U S A. 111: 5135–5140. doi:10.1073/pnas.1400975111.
- ↑ The Petunia Platform - Home
- ↑
- ↑ Reference genome sequence of the model plant ... [Nat Biotechnol. 2012] - PubMed - NCBI
- ↑ Jia J, Zhou S, Kong X, et al. (2013). "Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation". Nature. 496 (7443): 91–95. Bibcode:2013Natur.496...91.. doi:10.1038/nature12028.
- ↑ The International Brachypodium Initiative (December 2009). "Genome sequencing and analysis of the model grass Brachypodium distachyon". Nature. 463 (7282): 763–8. Bibcode:2010Natur.463..763T. doi:10.1038/nature08747. PMID 20148030.
- ↑ The International Barley Genome Sequencing Consortium. "A physical, genetic and functional sequence assembly of the barley genome". Nature. 491 (7426). Bibcode:2012Natur.491..711T. doi:10.1038/nature11543.
- ↑ Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution : Nature Communications : Nature Publishing Group
- ↑ Hurwitz, BL; Kudrna, D; Yu, Y; Sebastian, A; Zuccolo, A; Jackson, SA; Ware, D; Wing, RA; et al. (2010). "Rice structural variation: A comparative analysis of structural variation between rice and three of its closest relatives in the genus Oryza". The Plant journal : for cell and molecular biology. 63 (6): 990–1003. doi:10.1111/j.1365-313X.2010.04293.x. PMID 20626650.
- ↑ Huang, X.; Kurata, N.; Wei, X.; Wang, Z. X.; Wang, A.; Zhao, Q.; Zhao, Y.; Liu, K.; Lu, H.; Li, W.; Guo, Y.; Lu, Y.; Zhou, C.; Fan, D.; Weng, Q.; Zhu, C.; Huang, T.; Zhang, L.; Wang, Y.; Feng, L.; Furuumi, H.; Kubo, T.; Miyabayashi, T.; Yuan, X.; Xu, Q.; Dong, G.; Zhan, Q.; Li, C.; Fujiyama, A.; et al. (2012). "A map of rice genome variation reveals the origin of cultivated rice". Nature. 490 (7421): 497–501. doi:10.1038/nature11532. PMID 23034647.
- ↑ Yu J, Hu S, Wang J, et al. (April 2002). "A draft sequence of the rice genome (Oryza sativa L. ssp. indica)". Science. 296 (5565): 79–92. Bibcode:2002Sci...296...79Y. doi:10.1126/science.1068037. PMID 11935017.
- ↑ Goff SA, Ricke D, Lan TH, et al. (April 2002). "A draft sequence of the rice genome (Oryza sativa L. ssp. japonica)". Science. 296 (5565): 92–100. Bibcode:2002Sci...296...92G. doi:10.1126/science.1068275. PMID 11935018.
- ↑ Phytozome v9.1: Panicum virgatum
- ↑ The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla) : Nature Genetics : Nature Publishing Group
- ↑ Paterson, A.; Bowers, J.; Bruggmann, R.; Dubchak, I.; Grimwood, J.; Gundlach, H.; Haberer, G.; Hellsten, U.; Mitros, T.; Poliakov, A.; Schmutz, J.; Spannagl, M.; Tang, H.; Wang, X.; Wicker, T.; Bharti, A. K.; Chapman, J.; Feltus, F. A.; Gowik, U.; Grigoriev, I. V.; Lyons, E.; Maher, C. A.; Martis, M.; Narechania, A.; Otillar, R. P.; Penning, B. W.; Salamov, A. A.; Wang, Y.; Zhang, L.; et al. (2009). "The Sorghum bicolor genome and the diversification of grasses" (PDF). Nature. 457 (7229): 551–556. Bibcode:2009Natur.457..551P. doi:10.1038/nature07723. PMID 19189423.
- ↑ Brenchley R, Spannagl M, Pfeifer M, et al. (2012). "Analysis of the bread wheat genome using whole-genome shotgun sequencing". Nature. 491 (7426): 705–710. Bibcode:2012Natur.491..705B. doi:10.1038/nature11650. PMC 3510651. PMID 23192148.
- ↑ Ling H-Q, Zhou S, Liu D et al. (2013). "Draft genome of the wheat A-genome progenitor Triticum urartu". Nature. 496 (7443): 87–90. Bibcode:2013Natur.496...87L. doi:10.1038/nature11997.
- ↑ MaizeSequence 5b.60: Home
- ↑ Schnable P, Ware D, Fulton RS, et al. (22 November 2009). "The B73 Maize Genome: Complexity, Diversity, and Dynamics". Science. 326 (5956): 1112–1115. Bibcode:2009Sci...326.1112S. doi:10.1126/science.1178534. PMID 19965430.
- ↑ D’Hont; et al. (2012). "The banana (Musa acuminata) genome and the evolution of monocotyledonous plants". Nature. 488 (7410): 213–217. Bibcode:2012Natur.488..213D. doi:10.1038/nature11241. PMID 22801500.
- ↑ Davey; et al. (2013). "A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids.". BMC Genomics. 14: 683. doi:10.1186/1471-2164-14-683.
- ↑ Al-Dous; et al. (2011). "De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera)". Nature Biotechnology. 29 (6): 521–527. doi:10.1038/nbt.1860.
- ↑ Singh; et al. (2013). "Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds.". Nature. 500 (7462): 335–339. doi:10.1038/nature12309.
- ↑ Wang; et al. (2014). "The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle.". Nature Commun. 5: 3311. doi:10.1038/ncomms4311. PMC 3948053. PMID 24548928.
- ↑ Nystedt, Björn; Street, Nathaniel R.; Wetterbom, Anna; Zuccolo, Andrea; Lin, Yao-Cheng; Scofield, Douglas G.; Vezzi, Francesco; Delhomme, Nicolas; Giacomello, Stefania; Alexeyenko, Andrey; Vicedomini, Riccardo; Sahlin, Kristoffer; Sherwood, Ellen; Elfstrand, Malin; Gramzow, Lydia; Holmberg, Kristina; Hällman, Jimmie; Keech, Olivier; Klasson, Lisa; Koriabine, Maxim; Kucukoglu, Melis; Käller, Max; Luthman, Johannes; Lysholm, Fredrik; Niittylä, Totte; Olson, Åke; Rilakovic, Nemanja; Ritland, Carol; Rosselló, Josep A.; Sena, Juliana; Svensson, Thomas; Talavera-López, Carlos; Theißen, Günter; Tuominen, Hannele; Vanneste, Kevin; Wu, Zhi-Qiang; Zhang, Bo; Zerbe, Philipp; Arvestad, Lars; Bhalerao, Rishikesh; Bohlmann, Joerg; Bousquet, Jean; Garcia Gil, Rosario; Hvidsten, Torgeir R.; de Jong, Pieter; MacKay, John; Morgante, Michele; Ritland, Kermit; Sundberg, Björn; Lee Thompson, Stacey; Van de Peer, Yves; Andersson, Björn; Nilsson, Ove; Ingvarsson, Pär K.; Lundeberg, Joakim; Jansson, Stefan (2013). "The Norway spruce genome sequence and conifer genome evolution". Nature. 497 (7451): 579–584. doi:10.1038/nature12211. PMID 23698360. Cite uses deprecated parameter
|coauthors=
(help) - ↑ Birol, Inanc; Raymond, Anthony; Jackman, Shaun D.; Pleasance, Stephen; Coope, Robin; Taylor, Greg A.; Yuen, Macaire M.S.; Keeling, Christopher I.; Brand, Dana; Vandervalk, Benjamin P.; Kirk, Heather; Pandoh, Pawan; Moore, Richard A.; Zhao, Yongjun; Mungall, Andrew J.; Jaquish, Barry; Yanchuk, Alvin; Ritland, Carol; Boyle, Brian; Bousquet, Jean; Ritland, Kermit; MacKay, John; Bohlmann, Jörg; Jones, Steven J.M. (2013). "Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data". Bioinformatics. 29 (12): 1492–1497. doi:10.1093/bioinformatics/btt178. PMC 3673215. PMID 23698863. Cite uses deprecated parameter
|coauthors=
(help) - ↑ Zimin, A.; Stevens, K. A.; Crepeau, M. W.; Holtz-Morris, A.; Koriabine, M.; Marcais, G.; Puiu, D.; Roberts, M.; Wegrzyn, J. L.; de Jong, P. J.; Neale, D. B.; Salzberg, S. L.; Yorke, J. A.; Langley, C. H. (2014). "Sequencing and Assembly of the 22-Gb Loblolly Pine Genome". Genetics. 196 (3): 875–890. doi:10.1534/genetics.113.159715. PMC 3948813. PMID 24653210. Cite uses deprecated parameter
|coauthors=
(help) - ↑ Wegrzyn, J. L.; Liechty, J. D.; Stevens, K. A.; Wu, L.-S.; Loopstra, C. A.; Vasquez-Gross, H. A.; Dougherty, W. M.; Lin, B. Y.; Zieve, J. J.; Martinez-Garcia, P. J.; Holt, C.; Yandell, M.; Zimin, A. V.; Yorke, J. A.; Crepeau, M. W.; Puiu, D.; Salzberg, S. L.; de Jong, P. J.; Mockaitis, K.; Main, D.; Langley, C. H.; Neale, D. B. (2014). "Unique Features of the Loblolly Pine (Pinus taeda L.) Megagenome Revealed Through Sequence Annotation". Genetics. 196 (3): 891–909. doi:10.1534/genetics.113.159996. PMC 3948814. PMID 24653211. Cite uses deprecated parameter
|coauthors=
(help) - ↑ Neale, David B; Wegrzyn, Jill L; Stevens, Kristian A; Zimin, Aleksey V; Puiu, Daniela; Crepeau, Marc W; Cardeno, Charis; Koriabine, Maxim; Holtz-Morris, Ann E; Liechty, John D; Martínez-García, Pedro J; Vasquez-Gross, Hans A; Lin, Brian Y; Zieve, Jacob J; Dougherty, William M; Fuentes-Soriano, Sara; Wu, Le-Shin; Gilbert, Don; Marçais, Guillaume; Roberts, Michael; Holt, Carson; Yandell, Mark; Davis, John M; Smith, Katherine E; Dean, Jeffrey FD; Lorenz, W Walter; Whetten, Ross W; Sederoff, Ronald; Wheeler, Nicholas; McGuire, Patrick E; Main, Doreen; Loopstra, Carol A; Mockaitis, Keithanne; deJong, Pieter J; Yorke, James A; Salzberg, Steven L; Langley, Charles H (2014). "Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies". Genome Biology. 15 (3): R59. doi:10.1186/gb-2014-15-3-r59. PMC 4053751. PMID 24647006. Cite uses deprecated parameter
|coauthors=
(help) - ↑ http://www.research-in-germany.de/coremedia/generator/dachportal/en/07__News_20and_20Events/VDITZ_20-_20News_26Events/Archiv/2009-10-25_2C_20Full_20oilseed_20rape_20genome_20deciphered,sourcePageId=34814.html
- ↑ "First Draft Of Oil Palm Genome Completed". Energy-daily.com. Retrieved 2010-08-27.
- ↑ "Jute genome decoded : Golden fibre to become healthy, high yielding, weather-tolerant; Hawaii-based Bangladeshi scientist leads team to landmark discovery". The Daily Star.
- ↑ "Jute genome sequence decoded by Bangladeshi scientists". Hindusthan Times.
- ↑ "স্বপ্নযাত্রা (Chasing the dream)". Jute Genome Project.
- ↑ Welcome to the British Ash Tree Genome Project | The British Ash Tree Genome Project -
The School of Biological & Chemical Sciences - ↑ BBC News - Ash genome reveals fungus resistance