MIL-STD-810
MIL-STD-810, Environmental Engineering Considerations and Laboratory Tests is a United States Military Standard that emphasizes tailoring an equipment's environmental design and test limits to the conditions that it will experience throughout its service life, and establishing chamber test methods that replicate the effects of environments on the equipment rather than imitating the environments themselves. The MIL-STD-810 test series are approved for use by all departments and agencies of the United States Department of Defense (DoD). Although prepared specifically for military applications, the standard is often used for commercial products as well. The current document revision (as of 2012) is MIL-STD-810G[1] which was issued on October 31, 2008. It superseded MIL-STD-810F released on January 1, 2000 which was last updated on May 5, 2003.[2] The standard's guidance and test methods are intended to: (i) Define environmental stress sequences, durations, and levels of equipment life cycles; (ii) Be used to develop analysis and test criteria tailored to the equipment and its environmental life cycle; (iii) Evaluate equipment's performance when exposed to a life cycle of environmental stresses; (iv) Identify deficiencies, shortcomings, and defects in equipment design, materials, manufacturing processes, packaging techniques, and maintenance methods; and (v) Demonstrate compliance with contractual requirements.
Cognizant agency
MIL-STD-810 is maintained by a Tri-Service partnership that includes the USAF, the US Army, and the US Navy.[3] The U.S. Army Test and Evaluation Command, or ATEC, serves as Lead Standardization Activity / Preparing Activity, and is chartered under the Defense Standardization Program (DSP) with maintaining the functional expertise and serving as the DoD-wide technical focal point for the standard.
Scope and purpose of MIL-STD-810
MIL-STD-810 addresses a broad range of environmental conditions that include: low pressure for altitude testing; exposure to high and low temperatures plus temperature shock (both operating and in storage); rain (including wind blown and freezing rain); humidity, fungus, salt fog for rust testing; sand and dust exposure; explosive atmosphere; leakage; acceleration; shock and transport shock; gunfire vibration; and random vibration. The standard describes environmental management and engineering processes that can be of enormous value to generate confidence in the environmental worthiness and overall durability of a system design. The standard contains military acquisition program planning and engineering direction to consider the influences that environmental stresses have on equipment throughout all phases of its service life. The document does not impose design or test specifications. Rather, it describes the environmental tailoring process that results in realistic material designs and test methods based on material system performance requirements.
Finally, there are limitations inherent in laboratory testing that make it imperative to use proper engineering judgement to extrapolate laboratory results to results that may be obtained under actual service conditions. In many cases, real-world environmental stresses (singularly or in combination) cannot be duplicated in test laboratories. Therefore, users should not assume that an item that passes laboratory testing also will pass field/fleet verification tests.
History and evolution of MIL-STD-810
In 1945, the Army Air Force (AAF) released the first specification providing a formal methodology for testing equipment under simulated environmental conditions. That document, entitled AAF Specification 41065, Equipment - General Specification for Environmental Test of, is the direct ancestor of MIL-STD-810.[4] In 1965, the USAF released a technical report with data and information on the origination and development of natural and induced environmental tests intended for aerospace and ground equipment. By using that document, the design engineer obtained a clearer understanding of the interpretation, application, and relationship of environmental testing to military equipment and material.[5]
The Institute of Environmental Sciences and Technology (IEST), a non-profit technical society, released the publication History and Rationale of MIL-STD-810 to capture the thought process behind the evolution of MIL-STD-810.[6] It also provides a development history of test methods, rationale for many procedural changes, tailoring guidance for many test procedures, and insight into the future direction of the standard.
The MIL-STD-810 test series originally addressed generic laboratory environmental testing. The first edition of MIL-STD-810[7] in 1962 included only a single sentence allowing users to modify tests to reflect environmental conditions. Subsequent editions contained essentially the same phrase, but did not elaborate on the subject until MIL-STD-810D[8] was issued marking one of the more significant revisions of the standard with its focus more on shock and vibration tests that closely mirrored real-world operating environments. MIL-STD-810F further defined test methods while continuing the concept of creating test chambers that simulate conditions likely to be encountered during a product's useful life rather than simply replicating the actual environments. More recently, MIL-STD-810G implements Test Method 527 calling for the use of multiple vibration exciters to perform multi-axis shaking that simultaneously excites all test article resonances and simulates real-world vibrations. This approach replaces the legacy approach of three distinct tests, i.e., shaking a load first in its x axis, then its y axis, and finally in its z axis.
A matrix of the tests and methods of MIL-STD-810 through Revision G is available on the web and quite useful in comparing the changes among the various revisions .
The following table traces the specification's evolution in terms of environmental tailoring to meet a specific user's needs.
Version of MIL-STD-810 | Date | Focus on Environmental Considerations |
---|---|---|
MIL-STD-810 | 14-June-1962 | One sentence under “Purpose” states that the laboratory test methods serve as a guide to those who prepare environmental portions of detail specifications. One sentence on tailoring. |
MIL-STD-810A [9] | 23-Jun-1964 | Same as MIL-STD-810. |
MIL-STD-810B[10] | 15-Jun-1967 | One sentence under “Purpose/Scope” states that the standard establishes methods for determining the resistance of equipment to the effects of natural and induced environments peculiar to military operations. One sentence on tailoring. |
MIL-STD-810C[11] | 03-Oct-1975 | Same as MIL-STD-810B |
MIL-STD-810D | 19-Jul-1983 | A section on tailoring explains how to consider environmental issues throughout the materiel development process. Includes diagrams on the environmental tailoring process and on environmental life cycle histories of various classes of military hardware. |
MIL-STD-810E[12] | 14-Jul-1989 | Same as 810D with addition of a flow diagram, “How to Use MIL-STD-810E,” that shows how Data Item Descriptions relate to each other in the acquisition process and who is responsible for preparing them. |
MIL-STD-810F[13] | 01-Jan-2000 | New 54-page “Part One” explains how to implement the environmental tailoring process throughout the material acquisition cycle, focusing separately on the roles of the different users. Includes Environmental Engineering Program Guide. The guidance goes beyond laboratory testing to encompass natural environment field/fleet testing. Alternatives to testing hardware prototypes (e.g., modeling and simulation) are recognized as standard environmental engineering test practices. |
MIL-STD-810G, Part one - General program guidelines
Part One of MIL-STD-810G describes management, engineering, and technical roles in the environmental design and test tailoring process. It focuses on the process of tailoring design and test criteria to the specific environmental conditions an equipment item is likely to encounter during its service life. New appendices support the succinctly presented text of Part One. It describes the tailoring process (i.e., systematically considering detrimental effects that various environmental factors may have on a specific equipment throughout its service life) and applies this process throughout the equipment's life cycle to meet user and interoperability needs.
MIL-STD-810G, Part two - Laboratory test methods
Part Two of MIL-STD-810G contains the environmental laboratory test methods to be applied using the test tailoring guidelines described in Part One of the document. With the exception of Test Method 528, these methods are not mandatory, but rather the appropriate method is selected and tailored to generate the most relevant test data possible. Each test method in Part Two contains some environmental data and references, and it identifies particular tailoring opportunities. Each test method supports the test engineer by describing preferred laboratory test facilities and methodologies. These environmental management and engineering processes can be of enormous value to generate confidence in the environmental worthiness and overall durability of equipment and material. Still, the user must recognize that there are limitations inherent in laboratory testing that make it imperative to use engineering judgment when extrapolating from laboratory results to results that may be obtained under actual service conditions. In many cases, real-world environmental stresses (singularly or in combination) cannot be duplicated practically or reliably in test laboratories. Therefore, users should not assume that a system or component that passes laboratory tests of this standard also would pass field/fleet verification trials.[14]
Specific examples of Test Methods called out in MIL-STD-810G are listed below:
- Test Method 500.5 Low Pressure (Altitude)
- Test Method 501.5 High Temperature
- Test Method 502.5 Low Temperature
- Test Method 503.5 Temperature Shock
- Test Method 504.1 Contamination by Fluids
- Test Method 505.5 Solar Radiation (Sunshine)
- Test Method 506.5 Rain
- Test Method 507.5 Humidity
- Test Method 508.6 Fungus
- Test Method 509.5 Salt Fog
- Test Method 510.5 Sand and Dust
- Test Method 511.5 Explosive Atmosphere
- Test Method 512.5 Immersion
- Test Method 513.6 Acceleration
- Test Method 514.6 Vibration
- Test Method 515.6 Acoustic Noise
- Test Method 516.6 Shock
- Test Method 517.1 Pyroshock
- Test Method 518.1 Acidic Atmosphere
- Test Method 519.6 Gunfire Shock
- Test Method 520.3 Temperature, Humidity, Vibration, and Altitude
- Test Method 521.3 Icing/Freezing Rain
- Test Method 522.1 Ballistic Shock
- Test Method 523.3 Vibro-Acoustic/Temperature
- Test Method 524 Freeze / Thaw
- Test Method 525 Time Waveform Replication
- Test Method 526 Rail Impact.
- Test Method 527 Multi-Exciter
- Test Method 528 Mechanical Vibrations of Shipboard Equipment (Type I – Environmental and Type II – Internally Excited)
MIL-STD-810G, Part three - World climatic regions
Part Three contains a compendium of climatic data and guidance assembled from several sources, including AR 70-38, Research, Development, Test and Evaluation of Materiel for Extreme Climatic Conditions (1979),[15] a draft version of AR 70-38 (1990) that was developed using Air Land Battlefield Environment (ALBE) report information, Environmental Factors and Standards for Atmospheric Obscurants, Climate, and Terrain (1987), and MIL-HDBK-310, Global Climatic Data for Developing Military Products.[16] It also provides planning guidance for realistic consideration (i.e., starting points) of climatic conditions in various regions throughout the world.
Applicability to "ruggedized" consumer products
MIL-STD-810 is a flexible standard that allows users to tailor test methods to fit the application. As a result, a vendor's claims of "...compliance to MIL-STD-810..." can be misleading. Because no commercial organization or agency certifies compliance, commercial vendors can create the test methods or approaches to fit their product. Suppliers can—and some do—take significant latitude with how they test their products, and how they report the test results. When queried, many manufacturers will admit no testing has actually been done and that the product is only designed/engineered/built-to comply with the standard. This is because many of the tests described can be expensive to perform and usually require special facilities. Consumers who require rugged products should verify which test methods that compliance is claimed against and which parameter limits were selected for testing. Also, if some testing was actually done they would have to specify: (i) against which test methods of the standard the compliance is claimed; (ii) to which parameter limits the items were actually tested; and (iii) whether the testing was done internally or externally by an independent testing facility.[17]
Related documents
- Environmental Conditions for Airborne Equipment: The document DO-160G, Environmental Conditions and Test Procedures for Airborne Equipment outlines a set of minimal standard environmental test conditions (categories) and corresponding test procedures for airborne equipment. It is published by the RTCA, Inc, formerly known as Radio Technical Commission for Aeronautics [18] until their re-incorporation in 1991 as a not-for-profit corporation that functions as a Federal Advisory Committee pursuant to the United States Federal Advisory Committee Act.
- Environmental Test Methods for Defense Material: The Ministry of Defence (United Kingdom) provides requirements for environmental conditions experienced by defence material in service via the Defence Standard 00-35, Environmental Handbook for Defence Materiel (Part 3) Environmental Test Methods. The document contains environmental descriptions, a range of tests procedures and default test severities representing conditions that may be encountered during the equipment's life.[19]
- NATO Environmental Guidelines for Defence Equipment: The North Atlantic Treaty Organization (NATO) provides guidance to project managers, programme engineers, and environmental engineering specialists in the planning and implementation of environmental tasks via the Allied Environmental Conditions and Test Publication (AECTP) 100, Environmental Guidelines for Defence Materiel. The current document, AECTP-100 (Edition 3), was released January 2006.
- Shock Testing Requirements for Naval Ships: The military specification entitled MIL-S-901, Shock Tests H.I. (High Impact) Shipboard Machinery, Equipment, and Systems, Requirements (often mistakenly referred to as MIL-STD-901) covers shock testing requirements for ship board machinery, equipment, systems, and structures, excluding submarine pressure hull penetrations. Compliance to the document verifies the ability of shipboard installations to withstand shock loadings which may be incurred during wartime service due to the effects of nuclear or conventional weapons. The current specification was released March 17, 1989.[20]
References
- ↑ "MIL-STD-810G, Department of Defense Test Method Standard for Environmental Engineering Considerations and Laboratory Tests" (PDF). United States Department of Defense. 31 Oct 2008.
- ↑ "MIL-STD-810F, Department of Defense Test Method Standard for Environmental Engineering Considerations and Laboratory Tests" (PDF). United States Department of Defense. 1 Jan 2000.
- ↑ "Treatise Helps Users Interpret and Apply MIL-STD-810 — A Test Method Standard" (PDF). Journal of the IEST. Institute of Environmental Sciences & Technology. 48 (1): 147–151. 2005. Retrieved 27 Jun 2012.
- ↑ "AAF Specification 41065, Equipment - General Specification for Environmental Test of" (PDF). Air Technical Service Command, Wright Field, Dayton, Ohio. 7 Dec 1945.
- ↑ Junker, V (Oct 1965). "AFFDL-TR-65-197, The Evolution of USAF Environmental Testing". United States Air Force. Retrieved 2012-06-27.
- ↑ Egbert, H.W (2008). The History and Rationale of MIL-STD-810 (2nd ed.). Retrieved 26 Jun 2012.
- ↑ "MIL-STD-810(USAF), Military Standard, Environmental Test Methods for Aerospace and Ground Equipment" (PDF). Department of the Air Force. 14 Jun 1962.
- ↑ "MIL-STD-810D, Military Standard, Environmental Test Methods and Engineering Guidelines" (PDF). United States Department of Defense. 19 Jul 1983.
- ↑ "MIL-STD-810A, Military Standard, Environmental Test Methods and Engineering Guidelines" (PDF). United States Department of Defense. 23 Jun 1964.
- ↑ "MIL-STD-810B, Environmental Test Methods" (PDF). United States Department of Defense. 15 Jun 1967.
- ↑ "MIL-STD-810C, Military Standard, Environmental Test Methods and Engineering Guidelines" (PDF). United States Department of Defense. 10 Mar 1975.
- ↑ "MIL-STD-810E, Military Standard, Environmental Test Methods and Engineering Guidelines" (PDF). United States Department of Defense. 14 Jul 1989.
- ↑ "MIL-STD-810F" (PDF).
- ↑ MIL-STD-810G Working Group, ed. (2008), MIL-STD-810G, Department of Defense Test Method Standard - Environmental Engineering Considerations and Laboratory Tests, Part One, Aberdeen Proving Grounds, MD: US Army Developmental Test Command (Preparing Activity), pp. i – ii
- ↑ "Army Regulation 70-38, Research, Development, Test and Evaluation of Materiel for Extreme Climatic Conditions" (PDF). U.S. Army. 15-Sep-Jun-1979. Check date values in:
|date=
(help) - ↑ "MIL-HDBK-310, Military Handbook, Global Climatic Data for Developing Military Products" (PDF). United States Department of Defense. 23 Jun 1997.
- ↑ Blickenstorfer, Conrad H. "Rugged Notebook Computers—When a wimpy plastic clamshell notebook just won't do". Retrieved 2012-06-28.
- ↑ Moses, Harold (19 Jun 2006). "ADS-B NAS Wide Acquisition –Industry DayJune; Overview of RTCA Activities for ADS-B" (PDF). RTCA, Inc. Retrieved 2012-06-29.
- ↑ "DEF STAN 00-35 Part 3 Issue 4, Environmental Handbook for Defence Materiel (Part 3) Environmental Test Methods". Ministry of Defense (UK). 18-dep-2006. Retrieved 2012-06-28. Check date values in:
|date=
(help) - ↑ "MIL-S-901D (Navy), Shock Tests H.I. (High Impact) Shipboard Machinery, Equipment, and Systems, Requirement". Naval Sea Systems Command. 17 Mar 1989. Retrieved 2012-06-28.