Strontium-89
Strontium-89 | |
---|---|
General | |
Name, symbol | Strontium-89,89Sr |
Neutrons | 51 |
Protons | 38 |
Nuclide data | |
Natural abundance | syn |
Half-life | 50.57 days |
Decay products | 89Y |
Decay mode | Decay energy |
Beta decay |
Strontium-89 (89
Sr
) is a radioactive isotope of strontium produced by nuclear fission, with a half-life of 50.57 days. It undergoes β− decay into yttrium-89. Strontium-89 has an application in medicine.[1]
Physiological effects and medical use
Strontium belongs to the same periodic family as calcium (alkaline earth metals), and is metabolised in a similar fashion. 89Sr, used in the treatment of osseous (bony) metastases preferentially targets metabolically active regions of the bone.[3][4] As such, intravenous or intracavity administration of 89Sr may be helpful in the palliation of painful bony metastases, as it allows for targeted radiation to metastatic lesions, inducing apoptosis of cells, membrane and protein damage. Subsequently, bone pain resulting from cytokine release at the site of lesions, bone-associated nerve compression and stretching of the periosteum may be reduced. Treatment with 89Sr has been particularly effective in patients with hormonally-resistant prostate cancer, often leading to a decreased requirement for opioid analgesics, an increase in time until further radiation, and a decrease in tumour markers.
It is an artificial radioisotope which is used in treatment of bone cancer. In circumstances where cancer patients have widespread and painful bony metastases, the administration of 89Sr results in the delivery of beta particles directly to the area of bony problem, where calcium turnover is greatest.[5]
See also
- Isotopes of strontium
- Alpharadin, Radium-223 with similar clinical use.
References
- ↑ G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001.
- ↑ "Strontium 89 (Metastron™) treatment". QEH Birmingham. NHS. Retrieved 23 November 2015.
- ↑ Halperin, Edward C.; Perez, Carlos A.; Brady, Luther W. (2008). Perez and Brady's principles and practice of radiation oncology. Lippincott Williams & Wilkins. pp. 1997–. ISBN 978-0-7817-6369-1. Retrieved 19 July 2011.
- ↑ Bauman, Glenn; Charette, Manya; Reid, Robert; Sathya, Jinka (2005). "Radiopharmaceuticals for the palliation of painful bone metastases—a systematic review". Radiotherapy and Oncology. 75 (3): 258.E1–258.E13. doi:10.1016/j.radonc.2005.03.003. ISSN 0167-8140.
- ↑ Mertens, W. C.; Filipczak, L. A.; Ben-Josef, E.; Davis, L. P.; Porter, A. T. (1998). "Systemic bone-seeking radionuclides for palliation of painful osseous metastases: current concepts". CA: A Cancer Journal for Clinicians. 48 (6): 361–374. doi:10.3322/canjclin.48.6.361. ISSN 0007-9235.