MicroRNA and microRNA target database
This microRNA database and microRNA targets databases is a compilation of databases and web portals and servers used for microRNAs and their targets. MicroRNAs (miRNAs) represent an important class of small non-coding RNAs (ncRNAs) that regulate gene expression by targeting messenger RNAs.[1]
microRNA target gene databases
Name | Description | type | Link | References |
---|---|---|---|---|
StarBase | starBase is designed for decoding miRNA-lncRNA, miRNA-mRNA, miRNA-circRNA, miRNA-pseudogene, miRNA-sncRNA, protein-lncRNA, protein-sncRNA, protein-mRNA and protein-pseudogene interactions and ceRNA networks from 108 CLIP-Seq (HITS-CLIP, PAR-CLIP, iCLIP, CLASH) datasets. It also provides Pan-Cancer Analysis for microRNAs, lncRNAs, circRNAs and protein-coding genes from 6000 tumor samples. | database | website | [2][3] |
StarScan | StarScan is developed for scanning small RNA (miRNA, piRNA, siRNA) mediated RNA cleavage events in lncRNA, circRNA, mRNA and pseudo genes from degradome sequencing data. | web-based software | website | [4] |
Cupid | Cupid is a method for simultaneous prediction of miRNA-target interactions and their mediated competing endogenous RNA (ceRNA) interactions. It is an integrative approach significantly improves on miRNA-target prediction accuracy as assessed by both mRNA and protein level measurements in breast cancer cell lines. Cupid is implemented in 3 steps: Step 1: re-evaluate candidate miRNA binding sites in 3’ UTRs. Step2: interactions are predicted by integrating information about selected sites and the statistical dependency between the expression profiles of miRNA and putative targets. Step 3: Cupid assesses whether inferred targets compete for predicted miRNA regulators. * Only the source code for step 3 is provided. | software (MATLAB) | website | [5] |
TargetScan | Predicts biological targets of miRNAs by searching for the presence of sites that match the seed region of each miRNA. In flies and nematodes, predictions are ranked based on the probability of their evolutionary conservation. In zebrafish, predictions are ranked based on site number, site type, and site context, which includes factors that influence target-site accessibility. In mammals, the user can choose whether the predictions should be ranked based on the probability of their conservation or on site number, type, and context. In mammals and nematodes, the user can choose to extend the predictions beyond conserved sites and consider all sites. | database, webserver | website | [6][7][8][9][10] |
TarBase | A comprehensive database of experimentally supported animal microRNA targets | database | website | [11] |
Diana-microT | DIANA-microT 3.0 is an algorithm based on several parameters calculated individually for each microRNA and it combines conserved and non-conserved microRNA recognition elements into a final prediction score. | webserver | webserver | [12] |
miRecords | an integrated resource for microRNA-target interactions. | database | website | [13] |
PicTar | PicTar is Combinatorial microRNA target predictions. | database, webserver, predictions | website | [14] |
PITA | PITA, incorporates the role of target-site accessibility, as determined by base-pairing interactions within the mRNA, in microRNA target recognition. | webserver, predictions | predictions | [15] |
RepTar | A database of inverse miRNA target predictions, based on the RepTar algorithm that is independent of evolutionary conservation considerations and is not limited to seed pairing sites. | database | website | [16] |
RNA22 | The first link (predictions) provides RNA22 predictions for all protein coding transcripts in human, mouse, roundworm, and fruit fly. It allows you to visualize the predictions within a cDNA map and also find transcripts where multiple miR's of interest target. The second web-site link (custom) first finds putative microRNA binding sites in the sequence of interest, then identifies the targeted microRNA. | webserver, predictions | predictions custom | [17] |
miRTarBase | The experimentally validated microRNA-target interactions database. | database | website | [18] |
miRwalk | Aggregates and compare results from other miRNA-to-mRNA databases | database, webserver | [19] | |
MBSTAR | Multiple Instance approach for finding out true or functional microRNA binding sites. | webserver, predictions | predictions | [20] |
. |
microRNA databases
Name | Description | type | Link | References |
---|---|---|---|---|
deepBase | deepBase is a database for annotating and discovering small and long ncRNAs (microRNAs, siRNAs, piRNAs...) from high-throughput deep sequencing data. | database | website | [21] |
miRBase | miRBase database is a searchable database of published miRNA sequences and annotation. | database | website | [22] |
microRNA.org | microRNA.org is a ddatabase for Experimentally observed microRNA expression patterns and predicted microRNA targets & target downregulation scores. | database | website | [23] |
miRGen 2.0 | miRGen 2.0: a database of microRNA genomic information and regulation | database | website | [24] |
miRNAMap | miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes | database | website | [25] |
PMRD | PMRD: plant microRNA database | database | website | [26] |
TargetScan | TargetScan7.0 classifies microRNAs according to their level of conservation (i.e., species-specific, conserved among mammals, or broadly conserved among vertebrates) and aggregates them into families based upon their seed sequence. It also annotates conserved isomiRs using small RNA sequencing datasets.[10] | database | website | [10] |
VIRmiRNA | VIRmiRNA is the first dedicated resource on experimental viral miRNA and their targets. This resource also provides inclusive knowledge about anti-viral miRNAs known to play role in antiviral immunity of host. | Database | website | [27] |
References
- ↑ Bartel, D. P. (2009). "MicroRNAs: Target Recognition and Regulatory Functions". Cell. 136 (2): 215–233. doi:10.1016/j.cell.2009.01.002. PMC 3794896. PMID 19167326.
- ↑ Yang, J. -H.; Li, J. -H.; Shao, P.; Zhou, H.; Chen, Y. -Q.; Qu, L. -H. (2010). "StarBase: A database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data". Nucleic Acids Research. 39 (Database issue): D202–D209. doi:10.1093/nar/gkq1056. PMC 3013664. PMID 21037263.
- ↑ Li, JH; Liu, S; Zhou, H; Qu, LH; Yang, JH (Jan 1, 2014). "starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data.". Nucleic Acids Research. 42 (1): D92–7. doi:10.1093/nar/gkt1248. PMID 24297251.
- ↑ Liu, S; Li, JH; Wu, J; Zhou, KR; Zhou, H; Yang, JH; Qu, LH (18 May 2015). "StarScan: a web server for scanning small RNA targets from degradome sequencing data.". Nucleic Acids Research. 43: W480–6. doi:10.1093/nar/gkv524. PMID 25990732.
- ↑ Chiu, Hua-Sheng; Llobet-Navas, David; Yang, Xuerui; Chung, Wei-Jen; Ambesi-Impiombato, Alberto; Iyer, Archana; Kim, Hyunjae "Ryan"; Seviour, Elena G.; Luo, Zijun; Sehgal, Vasudha; Moss, Tyler; Lu, Yiling; Ram, Prahlad; Silva, José; Mills, Gordon B.; Califano, Andrea; Sumazin, Pavel (February 2015). "Cupid: simultaneous reconstruction of microRNA-target and ceRNA networks". Genome Research. 25 (2): 257–67. doi:10.1101/gr.178194.114. PMID 25378249.
- ↑ Lewis, BP; Burge CB; Bartel DP (Jan 14, 2005). "Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets". Cell. 120 (1): 15–20. doi:10.1016/j.cell.2004.12.035. PMID 15652477.
- ↑ Grimson, A; Farh, KK; Johnston, WK; Garrett-Engele, P; Lim, LP; Bartel, DP (Jul 6, 2007). "MicroRNA targeting specificity in mammals: determinants beyond seed pairing.". Molecular Cell. 27 (1): 91–105. doi:10.1016/j.molcel.2007.06.017. PMC 3800283. PMID 17612493.
- ↑ Friedman, RC; Farh, KK; Burge, CB; Bartel, DP (January 2009). "Most mammalian mRNAs are conserved targets of microRNAs.". Genome Research. 19 (1): 92–105. doi:10.1101/gr.082701.108. PMC 2612969. PMID 18955434.
- ↑ Garcia, DM; Baek, D; Shin, C; Bell, GW; Grimson, A; Bartel, DP (Sep 11, 2011). "Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs.". Nature Structural & Molecular Biology. 18 (10): 1139–46. doi:10.1038/nsmb.2115. PMC 3190056. PMID 21909094.
- 1 2 3 Agarwal, Vikram; Bell, George W.; Nam, Jin-Wu; Bartel, David P. (2015-08-12). "Predicting effective microRNA target sites in mammalian mRNAs". eLife. 4: e05005. doi:10.7554/eLife.05005. ISSN 2050-084X. PMC 4532895. PMID 26267216.
- ↑ Sethupathy P, Corda B, Hatzigeorgiou AG (2006). "TarBase: A comprehensive database of experimentally supported animal microRNA targets.". RNA. 12 (2): 192–197. doi:10.1261/rna.2239606. PMC 1370898. PMID 16373484.
- ↑ Maragkakis M, Alexiou P, Papadopoulos GL, Reczko M, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, Simossis VA, Sethupathy P, Vergoulis T, Koziris N, Sellis T, Tsanakas P, Hatzigeorgiou AG (2009). "Accurate microRNA target prediction correlates with protein repression levels.". BMC Bioinformatics. 10: 295. doi:10.1186/1471-2105-10-295. PMC 2752464. PMID 19765283.
- ↑ Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T (2009). "miRecords: an integrated resource for microRNA-target interactions.". Nucl. Acids Res. 37 (Database issue): D105–110. doi:10.1093/nar/gkn851. PMC 2686554. PMID 18996891.
- ↑ Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005). "Combinatorial microRNA target predictions.". Nat Genet. 37 (5): 495–500. doi:10.1038/ng1536. PMID 15806104.
- ↑ Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007). "The role of site accessibility in microRNA target recognition.". Nat Genet. 39 (10): 1278–84. doi:10.1038/ng2135. PMID 17893677.
- ↑ Elefant, Naama; Berger Amnon; Shein Harel; Hofree Matan; Margalit Hanah; Altuvia Yael (Jan 2011). "RepTar: a database of predicted cellular targets of host and viral miRNAs". Nucleic Acids Res. England. 39 (Database issue): D188–94. doi:10.1093/nar/gkq1233. PMC 3013742. PMID 21149264.
- ↑ Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I (2006). "A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes.". Cell. 126 (6): 1203–17. doi:10.1016/j.cell.2006.07.031. PMID 16990141.
- ↑ Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, Tsai WT, Chen GZ, Lee CJ, Chiu CM, Chien CH, Wu MC, Huang CY, Tsou AP, Huang HD (2011). "miRTarBase: a database curates experimentally validated microRNA-target interactions.". Nucleic Acids Research. 39 (Database issue): D163–9. doi:10.1093/nar/gkq1107. PMC 3013699. PMID 21071411.
- ↑ Dweep H, Sticht C, Pandey P, Gretz N (2011). "miRWalk-database: prediction of possible miRNA binding sites by "walking" the genes of three genomes.". JBI. 44 (5): 839–47. doi:10.1016/j.jbi.2011.05.002. PMID 21605702.
- ↑ Bandyopadhyay S, Ghosh D, Mitra R, Zhao Z (2015). "MBSTAR: multiple instance learning for predicting specific functional binding sites in microRNA targets.". Sci Rep. 5: 8004. doi:10.1038/srep08004. PMID 25614300.
- ↑ Yang JH, Shao P, Zhou H, Chen YQ, Qu LH (2010). "deepBase: a database for deeply annotating and mining deep sequencing data.". Nucl. Acids Res. 38 (Database issue): D123–130. doi:10.1093/nar/gkp943. PMC 2808990. PMID 19966272.
- ↑ Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008). "miRBase: tools for microRNA genomics.". Nucl. Acids Res. 36: D154–D158. doi:10.1093/nar/gkm952. PMC 2238936. PMID 17991681.
- ↑ Betel D, Wilson M, Gabow A, Marks DS, Sander C (2007). "The microRNA.org resource: targets and expression.". Nucl. Acids Res. 36 (Database issue): D149–153. doi:10.1093/nar/gkm995. PMC 2238905. PMID 18158296.
- ↑ Alexiou P, Vergoulis T, Gleditzsch M, Prekas G, Dalamagas T, Megraw M, Grosse I, Sellis T, Hatzigeorgiou AG (2010). "miRGen 2.0: a database of microRNA genomic information and regulation.". Nucl. Acids Res. 38 (Database issue): D137–41. doi:10.1093/nar/gkp888. PMC 2808909. PMID 19850714.
- ↑ Hsu PW, Huang HD, Hsu SD, Lin LZ, Tsou AP, Tseng CP, Stadler PF, Washietl S, Hofacker IL (2006). "miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes.". Nucl. Acids Res. 34 (Database issue): D135–139. doi:10.1093/nar/gkj135. PMC 1347497. PMID 16381831.
- ↑ Zhang Z, Yu J, Li D, Zhang Z, Liu F, Zhou X, Wang T, Ling Y, Su Z (2010). "PMRD: plant microRNA database.". Nucl. Acids Res. 38 (Database issue): D806–813. doi:10.1093/nar/gkp818. PMC 2808885. PMID 19808935.
- ↑ Qureshi, Abid; Thakur, Nishant; Monga, Isha; Thakur, Anamika; Kumar, Manoj (2014-01-01). "VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets". Database: The Journal of Biological Databases and Curation. 2014. doi:10.1093/database/bau103. ISSN 1758-0463. PMC 4224276. PMID 25380780.
Further reading
- Lee, RC; Ambros V (2001). "An extensive class of small RNAs in Caenorhabditis elegans". Science. 294 (5543): 862–864. doi:10.1126/science.1065329. PMID 11679672.
- Ambros, V (2001). "microRNAs: tiny regulators with great potential". Cell. 107 (7): 823–826. doi:10.1016/S0092-8674(01)00616-X. PMID 11779458.
External links
- starBase database
- StarScan tool
- Cupid: simultaneous reconstruction of microRNA-target and ceRNA networks
- miRBase database
- deepBase database
- TargetScan
- picTar
- miRecords database
- TarBase database
- Target ID Library
- miRTarBase database
- MBSTAR tool
This article is issued from Wikipedia - version of the 11/8/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.