Moore plane

In mathematics, the Moore plane, also sometimes called Niemytzki plane (or Nemytskii plane, Nemytskii's tangent disk topology), is a topological space. It is a completely regular Hausdorff space (also called Tychonoff space) which is not normal. It is named after Robert Lee Moore and Viktor Vladimirovich Nemytskii.

Definition

If is the (closed) upper half-plane , then a topology may be defined on by taking a local basis as follows:

That is, the local basis is given by

Properties

Proof that the Moore plane is not normal

The fact that this space M is not normal can be established by the following counting argument (which is very similar to the argument that the Sorgenfrey plane is not normal):

  1. On the one hand, the countable set of points with rational coordinates is dense in M; hence every continuous function is determined by its restriction to , so there can be at most many continuous real-valued functions on M.
  2. On the other hand, the real line is a closed discrete subspace of M with many points. So there are many continuous functions from L to . Not all these functions can be extended to continuous functions on M.
  3. Hence M is not normal, because by the Tietze extension theorem all continuous functions defined on a closed subspace of a normal space can be extended to a continuous function on the whole space.

In fact, if X is a separable topological space having an uncountable closed discrete subspace, X cannot be normal.

See also

References

This article is issued from Wikipedia - version of the 4/24/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.