Multiplicity-one theorem

In the mathematical theory of automorphic representations, a multiplicity-one theorem is a result about the representation theory of an adelic reductive algebraic group. The multiplicity in question is the number of times a given abstract group representation is realised in a certain space, of square integrable functions, given in a concrete way.

Definition

Let G be a reductive algebraic group over a number field K and let A denote the adeles of K. Let Z denote the centre of G and let ω be a continuous unitary character from Z(K)\Z(A)× to C×. Let L20(G(K)/G(A), ω) denote the space of cusp forms with central character ω on G(A). This space decomposes into a direct sum of Hilbert spaces

where the sum is over irreducible subrepresentations and mπ are non-negative integers.

The group of adelic points of G, G(A), is said to satisfy the multiplicity-one property if any smooth irreducible admissible representation of G(A) occurs with multiplicity at most one in the space of cusp forms of central character ω, i.e. mπ is 0 or 1 for all such π.

Results

The fact that the general linear group, GL(n), has the multiplicity-one property was proved by Jacquet & Langlands (1970) for n = 2 and independently by Piatetski-Shapiro (1979) and Shalika (1974) for n > 2 using the uniqueness of the Whittaker model. Multiplicity-one also holds for SL(2), but not for SL(n) for n > 2 (Blasius 1994).

Strong multiplicity one theorem

The strong multiplicity one theorem of Piatetski-Shapiro (1979) and Jacquet & Shalika (1981) states that two cuspidal automorphic representations of the general linear group are isomorphic if their local components are isomorphic for all but a finite number of places.

References

This article is issued from Wikipedia - version of the 10/31/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.