Mxparser
Original author(s) | Mariusz Gromada |
---|---|
Initial release | January 2010 |
Stable release |
3.0.0
/ 18 May 2016 |
Repository |
github |
Development status | Active |
Written in | Java, C# |
Platform | JVM, Android, .NET, MONO |
License | Simplified BSD licenses |
Website |
mathparser |
mXparser is an open-source mathematical expressions parser/evaluator providing abilities to calculate various expressions at a run time.[1] Expressions definitions are given as plain text, then verified in terms of grammar / syntax, finally calculated. Library source code is maintained separately for Java and C#, providing the same API for Java/JVM, Android, .NET and MONO (Common Language Specification Compliant). Software is free and is distributed under Simplified BSD License.
Main features / usage examples
mXparser delivers functionalities such as: basic calculations, built-in constants and functions, numerical calculus operations, iterated operators, user defined constants, user defined functions, user defined recursion.
Basic operators[2]
mXparser supports basic operators, such as: addition '+', subtraction '-', multiplication '*', division '/', factorial '!', power '^', modulo '%'.
Expression e = new Expression("2+3/(4+5)^4");
double v = e.calculate();
Binary relations[2]
It is possible can combine typical expressions with binary relations (such as: greater than '>', less than '<', equality '=', inequality '<>', greater or equal '>=', lower or equal '<='), as each relation evaluation results in either '1' for true outcome, or '0' for false.
Expression e = new Expression("(2<3)+5");
double v = e.calculate();
Boolean logic[2]
Boolean logic also operates assuming equivalence of '1 as true' and '0 as false'. Supported Boolean operators include: AND conjunction , OR disjunction, NAND Sheffer stroke, NOR, XOR Exclusive OR, IMP Implication, CIMP Converse implication, NIMP Material nonimplication, CNIMP Converse nonimplication, EQV Logical biconditional, Negation.
Expression e = new Expression("1 -> 0");
double v = e.calculate();
Built-in mathematical functions[2]
Supported common mathematical functions (unary, binary and variable number of arguments), including: trigonometric functions, inverse trigonometric functions, logarithm functions, exponential function, hyperbolic functions, Inverse hyperbolic functions, Bell numbers, Lucas numbers, Stirling numbers, prime-counting function, exponential integral function, logarithmic integral function, offset logarithmic integral , binomial coefficient and others.
Expression e = new Expression("sin(0)+ln(2)+log(3,9)");
double v = e.calculate();
Expression e = new Expression("min(1,2,3,4)+gcd(1000,100,10)");
double v = e.calculate();
Expression e = new Expression("if(2<1, 3, 4)");
double v = e.calculate();
Expression e = new Expression("iff(2<1, 1; 3<4, 2; 10<2, 3; 5<10, 4)");
double v = e.calculate();
Built-in math constants[2]
Built-in mathematical constants, with high precision.
Expression e = new Expression("sin(pi)+ln(e)");
double v = e.calculate();
Iterated operators[2]
Iterated summation and product operators.
Expression e = new Expression("sum(i, 1, 10, ln(i))");
double v = e.calculate();
Expression e = new Expression("prod(i, 1, 10, sin(i))");
double v = e.calculate();
Numerical differentiation and integration[2]
mXparser delivers implementation of the following calculus operations: differentiation and integration.
Expression e = new Expression("der( sin(x), x )");
double v = e.calculate();
Expression e = new Expression("int( sqrt(1-x^2), x, -1, 1)");
double v = e.calculate();
Prime numbers support[2]
Expression e = new Expression("ispr(21)");
double v = e.calculate();
Expression e = new Expression("Pi(1000)");
double v = e.calculate();
Elements defined by user
Library provides API for creation of user-defined objects, such as: constants, arguments, functions.
User-defined constants[3]
Constant t = new Expression("t = 2*pi");
Expression e = new Expression("sin(t)", t);
double v = e.calculate();
User-defined arguments[3]
Argument x = new Argument("x = 5");
Argument y = new Argument("y = 2*x", x);
Expression e = new Expression("sin(x)+y", x, y);
double v = e.calculate();
User-defined functions[3]
Function f = new Function("f(x, y) = sin(x)+cos(y)");
Expression e = new Expression("f(1,2)", f);
double v = e.calculate();
User-defined recursion[3]
Function fib = new Function("fib(n) = iff( n>1, fib(n-1)+fib(n-2); n=1, 1; n=0, 0 ) )");
Expression e = new Expression("fib(10)", fib);
double v = e.calculate();
Requirements[3]
Documentation
mXparser - source code
Source code is maintained and shared on GitHub.[5]
License terms
Software is free and is distributed under Simplified BSD License.
See also
- List of numerical libraries
- List of numerical analysis software
- Mathematical software
- Exp4j
- Simplified BSD License