Ordered weighted averaging aggregation operator

In applied mathematics – specifically in fuzzy logic – the ordered weighted averaging (OWA) operators provide a parameterized class of mean type aggregation operators. They were introduced by Ronald R. Yager. Many notable mean operators such as the max, arithmetic average, median and min, are members of this class. They have been widely used in computational intelligence because of their ability to model linguistically expressed aggregation instructions.

Definition

Formally an OWA operator of dimension is a mapping that has an associated collection of weights lying in the unit interval and summing to one and with

where is the jth largest of the .

By choosing different W one can implement different aggregation operators. The OWA operator is a non-linear operator as a result of the process of determining the bj.

Properties

The OWA operator is a mean operator. It is bounded, monotonic, symmetric, and idempotent, as defined below.

Bounded
Monotonic if for
Symmetric if is a permutation map
Idempotent if all

Notable OWA operators

if and for
if and for

Characterizing features

Two features have been used to characterize the OWA operators. The first is the attitudinal character(orness).

This is defined as

It is known that .

In addition A  C(max) = 1, A  C(ave) = A  C(med) = 0.5 and A  C(min) = 0. Thus the A  C goes from 1 to 0 as we go from Max to Min aggregation. The attitudinal character characterizes the similarity of aggregation to OR operation(OR is defined as the Max).

The second feature is the dispersion. This defined as

An alternative definition is The dispersion characterizes how uniformly the arguments are being used ÀĚ

A literature survey: OWA (1988-2014)

The historical reconstruction of scientific development of the OWA field, the identification of the dominant direction of knowledge accumulation that emerged since the publication of the first OWA paper, and to discover the most active lines of research has recently been published, (see: http://onlinelibrary.wiley.com/doi/10.1002/int.21673/full). The results suggest, as expected, that Yager's paper[1] (IEEE Trans. Systems Man Cybernet, 18(1), 183–190, 1988) is the most influential paper and the starting point of all other research using OWA. Starting from his contribution, other lines of research developed and we describe them. Full list of papers published in OWA is also available at http://onlinelibrary.wiley.com/doi/10.1002/int.21673/full)

Type-1 OWA aggregation operators

The above Yager's OWA operators are used to aggregate the crisp values. Can we aggregate fuzzy sets in the OWA mechanism ? The Type-1 OWA operators have been proposed for this purpose. So the type-1 OWA operators provides us with a new technique for directly aggregating uncertain information with uncertain weights via OWA mechanism in soft decision making and data mining, where these uncertain objects are modelled by fuzzy sets.

The type-1 OWA operator is defined according to the alpha-cuts of fuzzy sets as follows:

Given the n linguistic weights in the form of fuzzy sets defined on the domain of discourse , then for each , an -level type-1 OWA operator with -level sets to aggregate the -cuts of fuzzy sets is given as

where , and is a permutation function such that , i.e., is the th largest element in the set .

The computation of the type-1 OWA output is implemented by computing the left end-points and right end-points of the intervals : and where . Then membership function of resulting aggregation fuzzy set is:

For the left end-points, we need to solve the following programming problem:

while for the right end-points, we need to solve the following programming problem:

This paper has presented a fast method to solve two programming problem so that the type-1 OWA aggregation operation can be performed efficiently.

References

This article is issued from Wikipedia - version of the 10/18/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.