Protocrystalline

Crystallization
Concepts
Crystallization · Crystal growth
Recrystallization · Seed crystal
Protocrystalline · Single crystal
Methods and technology
Boules
Bridgman–Stockbarger technique
Czochralski process
Fractional crystallization
Fractional freezing
Hydrothermal synthesis
Laser-heated pedestal growth
Crystal bar process
Fundamentals
Nucleation · Crystal
Crystal structure · Solid

A protocrystalline phase is a distinct phase occurring during crystal growth which evolves into a microcrystalline form. The term is typically associated with silicon films in optical applications such as solar cells.

Applications

Silicon solar cells

Amorphous silicon (a-Si) is a popular solar cell material owing to its low cost and ease of production. Owing to disordered structure (Urbach tail), its absorption extends to the energies below the band gap resulting in a wide-range spectral response; however, it has a relatively low solar cell efficiency. The efficiency is higher in protocrystalline silicon and it has also been shown to improve stability, but not eliminate it.[1][2] Protocrystalline Si also has a relatively low absorption near the band gap owing to its more ordered crystalline structure. Thus, protocrystalline and amorphous silicon can be combined in a tandem solar cell where the top layer of thin protocrystalline silicon absorbs short-wavelength light whereas the longer wavelengths are absorbed by the underlying a-Si substrate. Such two-layer cells can be produced at a relatively low temperature of 75 °C and have an efficiency of about 5%, and a four-layer cells yield an open circuit voltage above 3.1 V.[3][4]

See also

References

  1. S. Y. Myong, S. W. Kwon, J. H. Kwak, K. S. Lim, J. M. Pearce, and M. Konagai, "Good stability of protocrystalline silicon multilayer solar cells against light irradiation originating from vertically regular distribution of isolated nano-sized silicon grains", 4th World Conference on Photovoltaic Energy Conversion Proceedings, p. 492, 2006.
  2. S. Y. Myong, K. S. Lim, J. M. Pears, "Double amorphous silicon-carbide p-layer structures producing highly stabilized pin-type protocrystalline silicon multilayer solar cells", Applied Physics Letters, 87(19), 193509 (2005); 87, 259901(2005).
  3. Niedertemperaturabscheidung von Dünnschicht-Silicium für Solarzellen auf Kunststofffolien, Doctoral Thesis by Koch, Christian 2002
  4. J. M. Pearce; N. Podraza; R. W. Collins; M.M. Al-Jassim; K.M. Jones; J. Deng & C. R. Wronski (2007). "Optimization of Open-Circuit Voltage in Amorphous Silicon Solar Cells with Mixed Phase (Amorphous + Nanocrystalline) p-Type Contacts of Low Nanocrystalline Content" (PDF). Journal of Applied Physics. 101 (11): 114301. doi:10.1063/1.2714507.

External links


This article is issued from Wikipedia - version of the 6/5/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.