Triangular prismatic honeycomb

Triangular prismatic honeycomb
TypeUniform honeycomb
Schläfli symbol{3,6}×{∞} or t0,3{3,6,2,∞}
Coxeter diagrams

Space group
Coxeter notation
[6,3,2,∞]
[3[3],2,∞]
[(3[3])+,2,∞]
DualHexagonal prismatic honeycomb
Propertiesvertex-transitive

The triangular prismatic honeycomb or triangular prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed entirely of triangular prisms.

It is constructed from a triangular tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.

Related honeycombs

Hexagonal prismatic honeycomb

Hexagonal prismatic honeycomb
TypeUniform honeycomb
Schläfli symbol{6,3}×{∞} or t0,1,3{6,3,2,∞}
Coxeter diagram


Cell types4.4.6
Vertex figuretriangular bipyramid
Space group
Coxeter notation
[6,3,2,∞]
[3[3],2,∞]
DualTriangular prismatic honeycomb
Propertiesvertex-transitive

The hexagonal prismatic honeycomb or hexagonal prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space made up of hexagonal prisms.

It is constructed from a hexagonal tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.

This honeycomb can be alternated into the gyrated tetrahedral-octahedral honeycomb, with pairs of tetrahedra existing in the alternated gaps (instead of a triangular bipyramid).


Trihexagonal prismatic honeycomb

Trihexagonal prismatic honeycomb
TypeUniform honeycomb
Schläfli symbolr{6,3}x{∞} or t1,3{6,3}x{∞}
Vertex figureRectangular bipyramid
Coxeter diagram
Space group
Coxeter notation
[6,3,2,∞]
DualRhombille prismatic honeycomb
Propertiesvertex-transitive

The trihexagonal prismatic honeycomb or trihexagonal prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of hexagonal prisms and triangular prisms in a ratio of 1:2.

It is constructed from a trihexagonal tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.


Truncated hexagonal prismatic honeycomb

Truncated hexagonal prismatic honeycomb
TypeUniform honeycomb
Schläfli symbolt{6,3}×{∞} or t0,1,3{6,3,2,∞}
Coxeter diagram
Cell types4.4.12
3.4.4
Face types{3}, {4}, {12}
Edge figuresSquare,
Isosceles triangle
Vertex figureTriangular bipyramid
Space group
Coxeter notation
[6,3,2,∞]
DualTriakis triangular prismatic honeycomb
Propertiesvertex-transitive

The truncated hexagonal prismatic honeycomb or tomo-trihexagonal prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of dodecagonal prisms, and triangular prisms in a ratio of 1:2.

It is constructed from a truncated hexagonal tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.


Rhombitrihexagonal prismatic honeycomb

Rhombitrihexagonal prismatic honeycomb
TypeUniform honeycomb
Vertex figureTrapezoidal bipyramid
Schläfli symbolrr{6,3}×{∞} or t0,2,3{6,3,2,∞}
s2{3,6}×{∞}
Coxeter diagram
Space group
Coxeter notation
[6,3,2,∞]
DualDeltoidal trihexagonal prismatic honeycomb
Propertiesvertex-transitive

The rhombitrihexagonal prismatic honeycomb or rhombitrihexagonal prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of hexagonal prisms, cubes, and triangular prisms in a ratio of 1:3:2.

It is constructed from a rhombitrihexagonal tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.


Snub hexagonal prismatic honeycomb

Snub hexagonal prismatic honeycomb
TypeUniform honeycomb
Schläfli symbolsr{6,3}×{∞}
Coxeter diagram
Symmetry[(6,3)+,2,∞]
DualFloret pentagonal prismatic honeycomb
Propertiesvertex-transitive

The snub hexagonal prismatic honeycomb or simo-trihexagonal prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of hexagonal prisms and triangular prisms in a ratio of 1:8.

It is constructed from a snub hexagonal tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.


Truncated trihexagonal prismatic honeycomb

Truncated trihexagonal prismatic honeycomb
TypeUniform honeycomb
Schläfli symboltr{6,3}×{∞} or t0,1,2,3{6,3,2,∞}
Coxeter diagram
Space group
Coxeter notation
[6,3,2,∞]
Vertex figureirr. triangular bipyramid
DualKisrhombille prismatic honeycomb
Propertiesvertex-transitive

The truncated trihexagonal prismatic honeycomb or tomo-trihexagonal prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of dodecagonal prisms, hexagonal prisms, and cubes in a ratio of 1:2:3.

It is constructed from a truncated trihexagonal tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.


Elongated triangular prismatic honeycomb

Elongated triangular prismatic honeycomb
TypeUniform honeycomb
Schläfli symbol{3,6}:e×{∞}
s{}h1{}×{}
Coxeter diagram
Space group
Coxeter notation
[∞,2+,∞,2,∞]
[(∞,2)+,∞,2,∞]
DualPrismatic pentagonal prismatic honeycomb
Propertiesvertex-transitive

The elongated triangular prismatic honeycomb or elongated antiprismatic prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of cubes and triangular prisms in a ratio of 1:2.

It is constructed from an elongated triangular tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.


Gyrated triangular prismatic honeycomb

Gyrated triangular prismatic honeycomb
TypeConvex uniform honeycomb
Schläfli symbol{3,6}:g×{∞}
{4,4}f{}
Cell types(3.4.4)
Face types{3}, {4}
Vertex figure
Space group [4,(4,2+,∞,2+)] ?
Dual?
Propertiesvertex-transitive

The gyrated triangular prismatic honeycomb or parasquare fastigial cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space made up of triangular prisms. It is vertex-uniform with 12 triangular prisms per vertex.

It can be seen as parallel planes of square tiling with alternating offsets caused by layers of paired triangular prisms. The prisms in each layer are rotated by a right angle to those in the next layer.

It is one of 28 convex uniform honeycombs.

Pairs of triangular prisms can be combined to create gyrobifastigium cells. The resulting honeycomb is closely related but not equivalent: it has the same vertices and edges, but different two-dimensional faces and three-dimensional cells.


Gyroelongated triangular prismatic honeycomb

Gyroelongated triangular prismatic honeycomb
TypeUniform honeycomb
Schläfli symbol{3,6}:ge×{∞}
{4,4}f1{}
Vertex figure
Space group
Coxeter notation
[4,(4,2+,∞,2+)] ?
Dual-
Propertiesvertex-transitive

The gyroelongated triangular prismatic honeycomb or elongated parasquare fastigial cellulation is a uniform space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of cubes and triangular prisms in a ratio of 1:2.

It is created by alternating laters of cubes and triangular prisms, with the prisms alternating in orientation by 90 degrees.

It is related to the elongated triangular prismatic honeycomb which has the triangular prisms with the same orientation.


See also

References

This article is issued from Wikipedia - version of the 6/4/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.