SFRS7

SRSF7
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
Aliases SRSF7, 9G8, AAG3, SFRS7, serine/arginine-rich splicing factor 7, serine and arginine rich splicing factor 7
External IDs MGI: 1926232 HomoloGene: 134446 GeneCards: SRSF7
RNA expression pattern




More reference expression data
Orthologs
Species Human Mouse
Entrez

6432

225027

Ensembl

ENSG00000115875

ENSMUSG00000024097

UniProt

Q16629

Q8BL97

RefSeq (mRNA)

NM_001031684
NM_001195446
NM_006276

NM_001195485
NM_001195486
NM_001195487
NM_146083

RefSeq (protein)

NP_001026854.1
NP_001182375.1

NP_001182414.1
NP_001182415.1
NP_001182416.1
NP_666195.1

Location (UCSC) Chr 2: 38.74 – 38.75 Mb Chr 17: 80.2 – 80.21 Mb
PubMed search [1] [2]
Wikidata
View/Edit HumanView/Edit Mouse

Serine/arginine-rich splicing factor 7 (SRSF7) also known as splicing factor, arginine/serine-rich 7 (SFRS7) or splicing factor 9G8 is a protein that in humans is encoded by the SRSF7 gene.[3]

Function

The protein encoded by this gene is a member of the serine/arginine (SR)-rich family of pre-mRNA splicing factors, which constitute part of the spliceosome. Each of these factors contains an RNA recognition motif (RRM) for binding RNA and an RS domain for binding other proteins. The RS domain is rich in serine and arginine residues and facilitates interaction between different SR splicing factors. In addition to being critical for mRNA splicing, the SR proteins have also been shown to be involved in mRNA export from the nucleus and in translation.[3]

Model organisms

Model organisms have been used in the study of SRSF7 function. A conditional knockout mouse line called Srsf7tm1a(EUCOMM)Wtsi was generated at the Wellcome Trust Sanger Institute.[4] Male and female animals underwent a standardized phenotypic screen[5] to determine the effects of deletion.[6][7][8][9] Additional screens performed: - In-depth immunological phenotyping[10]

References

  1. "Human PubMed Reference:".
  2. "Mouse PubMed Reference:".
  3. 1 2 "Entrez Gene: SFRS7 splicing factor, arginine/serine-rich 7, 35kDa".
  4. Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  5. 1 2 "International Mouse Phenotyping Consortium".
  6. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410Freely accessible. PMID 21677750.
  7. Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  8. Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  9. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (Jul 2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell. 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMC 3717207Freely accessible. PMID 23870131.
  10. 1 2 "Infection and Immunity Immunophenotyping (3i) Consortium".

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

This article is issued from Wikipedia - version of the 5/20/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.