Sieved orthogonal polynomials
In mathematics, sieved orthogonal polynomials are orthogonal polynomials whose recurrence relations are formed by sieving the recurrence relations of another family; in other words, some of the recurrence relations are replaced by simpler ones. The first examples were the sieved ultraspherical polynomials introduced by Waleed Al-Salam, W. R. Allaway, and Richard Askey (1984). Mourad Ismail later studied sieved orthogonal polynomials in a long series of papers. Other families of sieved orthogonal polynomials that have been studied include sieved Pollaczek polynomials, and sieved Jacobi polynomials.
References
- Al-Salam, Waleed; Allaway, W. R.; Askey, Richard (1984), "Sieved ultraspherical polynomials", Transactions of the American Mathematical Society, 284 (1): 39–55, doi:10.2307/1999273, ISSN 0002-9947, MR 742411
This article is issued from Wikipedia - version of the 1/7/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.