Spiral groove bearing

Spiral groove bearings (journal and thrust) are self-acting, or hydrodynamic bearings used to reduce friction and wear without the use of pressurized lubricants. They have this ability due to special patterns of grooves. Spiral groove bearings are self-acting because their own rotation builds up the pressure needed to separate the bearing surfaces. For this reason, they are also 'contact-less' bearings.

Examples of spiral groove bearings with journal and thrust forms.

Operation

Spiral groove thrust bearings produce the required pressure to keep the bearing surfaces lubricated and separated purely by the pumping effect of the grooves, whereas journal, conical and spherical forms also get extra pressure generation by the hydrodynamic bearing wedge action. When the parts of the bearings are rotated with respect to each other the grooves push the lubricant through the bearing between the surfaces causing an overall rise in the pressure.

The motion of the surfaces will then cause the fluid to flow over the grooves and a pressure ripple, perpendicular to the direction of the motion, is formed. Between the surface of the bearings and the fluid, a net pressure rise occurs because this flow is limited by a plain bearing section or another set of grooves producing a pressure rise that acts to counter the pressure rise created by the first set of grooves (herringbone pattern). At a sufficient speed the internal pressures create enough force to support the applied load and the bearing surfaces are completely separated. It is the pressure acting perpendicular to the direction of motion that supports the bearing load.

Most gases or liquids can be used as the lubricant, including refrigerants, liquid metals, oil, grease,[1] water or air.[2]

This explanation neglects the effects of inertia, compressibility of the lubricant and other factors.[3]

Fabrication

The dimensions of the grooves are tailored to the intended operating conditions of the bearing. If the indentations on the grooved surface are too deep, then there will be significant leakage of the lubricant. If the depth is reduced, the pump effect will stop. The speed of the rotation of the bearing surfaces and the accuracy of the dimensions must also be taken into account. Designers and manufactures calculate the optimal dimensions for greatest efficiency.[4] The grooves are made by the following methods;

Etching

Etching is easiest way to make spiral groove bearings. The surface of the metal is coated with an etchant - resistant lacquer, then the intended locations of the grooves are removed by hand. The factors that affect the properties of the grooves in this method are;

Despite the simplicity of this method, there is a significant disadvantage: the groove depth is non-uniform and is therefore fairly inaccurate.

Selective etching

This method differs from regular etching as two layers are placed on the surface to be grooved, but only the upper layer is exposed to the etchant, leaving the lower surfaces protected.

Mechanical grooving

This method is used when more accurate and more uniform grooves are required. The grooves are cut by an electrical diameter cutter, The disc surface is rotated, and the cutter it is steered by a guider ring, so that the spirals have the required logarithmic shape. One disadvantage of this method is that more specialized equipment is required to accurately cut smaller grooves. (approximately 6 cm and less).

Soldering

Soldering is used when other fabrication methods are unavailable or inapplicable to the given situation. e.g. the bearing is too large for an etching bath. A foil on which the grooves have been etched is obtained, and is soldered onto the flat bearing surface.
The factors that are considered in this method are;

Laser Machining

Modern lasers have made the production of precise grooves easier and more affordable, but not all lasers nor laser companies have the required technology. A good supplier will produce precise constant depth grooves in ceramic or metal parts to within fractions of a micro-meter including proper logarithmic grooves for thrust bearings.

Types

The main types of spiral groove bearings are:[5]

Journal bearings

Cylindrical form journal bearings with a herringbone pattern of spiral grooves gives a bearing with excellent load capacity, resistance to cavitation and excellent stability.

Spiral groove journal and thrust bearings using air as a lubricant.

The symmetric herringbone pattern has zero flow which reduces the possibility of entraining dirt into the bearing, but spiral groove journal bearings are also found with a single pattern that produces a through flow of lubricant. This feature has been used to produce a known volume of flow for constant flow diesel pump metering systems.

Flat thrust bearings

Flat thrust bearings, the most common spiral groove bearings, are so named because one consists of a flat surface that opposes the grooved surface.

Variations in this type of bearing come from the nature of the spiral surface and the type of fluid flow. The following is a list of the different types of flat thrust bearings.

Spherical thrust bearings

Hemi-spherical grease lubricated spiral groove bearing used in low noise fans.

A spherical (or more usually a hemi-spherical) thrust bearing consists of a sphere that rotates concentrically in a spherical cup with groove patterns

The image shows the grease lubricated spiral groove hemispherical bearing invented by Ron Woolley of the Gas Bearing Advisory Service at Southampton University in collaboration with British Gas.[6]

Conical thrust bearings

In these bearings, a cone is cut out of the end of a cylindrical shaft. On the surface of the cone next to the cylindrical part, the grooves are made.

History and applications

Spiral groove bearings were invented in the UK and one of the first published papers was that by Whipple from which they were originally referred to as Whipple grooves .[7] During the 1960s and 1970s there was an explosion in analytic methods for their design and numerous applications were tried. Much of the history can be seen throughout the publications of the International Gas Bearing Symposium [8]

Spiral groove bearings were used most successfully in inertial gyroscopes for planes and ships.[9] In this application, the spiral groove bearings were made of boron carbide ceramic and the grooves were manufactured by ION beam. The bearings were very successful, with MTBF values over 100,000 hours and stop-start capability of 1,000,000 times.[10]

Due to the multiple technical advantages, thrust bearings continue to be used in gyroscopes such as in the Hubble Telescope.[11]

Many other applications have arisen over the last 20 years in compressors and turbines taking advantage of the oil-free, long life, low friction and clean green characteristics. [12]

One major application area is that of the dry gas seal where a spiral groove thrust bearing acts to lift the seal faces apart creating a narrow seal gap that prevents contact and wear. These are very successful and have been applied to many industrial compressors.

Another notable use of spiral groove bearings is in cryogenic expanders. They are used here to support the high speed rotation of turbines, and to minimize power losses due to inefficiency. Cryogenic expanders extract energy from the streams of gases that enter it, causing a rapid decrease in temperature, and the energy extracted is used to rotate the turbines.[13][14]

Advantages

The following lists the advantages of using spiral groove bearings as opposed to other self-acting bearings.

Design

There are some spreadsheet design methods on the market for incompressible lubricants (oil, water), but for compressible gas lubricants one has to resort to numerical methods and specialist design companies. Generally the analysis of spiral groove bearings requires a numerical method solving the Reynolds Equation although there are some optimum parameters published.[15] Modern CFD methods are not suitable for general design work as the number of elements around the bearing and across the clearance makes the analyses too slow. The critical design aspect for all bearings using compressible gas lubricants is stability whereas for in-compressible fluids load and power loss become equally important.

References

  1. The design of lubricant recirculating hydrodynamic spiral groove bearings using grease lubricants. PhD Thesis. Molyneaux A. University of Southampton 1983. <https://www.researchgate.net/publication/34993106_The_design_of_lubricant_recirculating_hydrodynamic_spiral_groove_bearings_using_grease_lubricants>
  2. "Molyneaux A. Externally Pressurised and Hybrid Bearings Lubricated with R134A for Oil- Free Compressors". EPFL. 1996.
  3. "Molyneaux A. Ceramic Spiral Groove Bearings in Oil-Free Compressors" (PDF). IMechE Conference. 1993.
  4. Muijderman, E. A.. Spiral groove bearings. New York: Springer-Verlag, 1966. Print. <http://www.emeraldinsight.com/journals.htm?articleid=1688586&show=abstract
  5. Muyderman, E.A. (1966). "Constructions with spiral-groove bearings". Wear. 9 (2): 118–141. doi:10.1016/0043-1648(66)90129-3.
  6. Patent: Lubricated axial thrust bearing. Woolley R W <https://www.google.com/patents/US3927921
  7. The inclined groove bearing Author(s): R.T.P. Whipple UK. Atomic Energy Authority <http://discovery.nationalarchives.gov.uk/details/r/C2965248>.
  8. Gas Bearing Advisory Service, Department of Mechanical Engineering, University of Southampton <http://www.worldcat.org/title/gas-bearing-symposium-papers/oclc/216839017>.
  9. Patent: Gas lubricated bearings and method of manufacture. Beardmore G. Smiths Industries, UK. <http://www.google.com.au/patents/EP0029667A1>.
  10. Breadman, G. Development of the series 700 gas bearing gyroscope. 5th International Gas Bearing Symposium, 1971. University of Southampton, UK.
  11. http://www.spacetelescope.org/about/general/gyroscopes/
  12. Ceramic Spiral Groove Bearings in Oil-Free Compressors. Molyneaux A. <http://www.ofttech.com/pdfpages/Ceramic%20Oil-Free%20Bearings.pdf>.
  13. Molyneaux, A K (1989). The Use of Spiral Groove Gas Bearings in a 350 000 rpm Cryogenic Expander. Tribology Transactions. 32. pp. 197–. doi:10.1080/10402008908981879.
  14. "FUNDAMENTALS OF THE TURBOEXPANDER - MIT File." Document Finder, Converter & Download - MIT File. N.p., n.d. Web. 13 Feb. 2012. <http://www.mitfile.com/pdf/fundamentals-turboexpander.html>.
  15. Optimization of self-acting herringbone-grooved journal bearings for maximum stability Hamrock Fleming NASA . <https://archive.org/details/nasa_techdoc_19740026775>.
This article is issued from Wikipedia - version of the 12/4/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.