Szász–Mirakyan operator

In functional analysis, a discipline within mathematics, the Szász–Mirakyan operators (also spelled "Mirakjan" and "Mirakian") are generalizations of Bernstein polynomials to infinite intervals, introduced by Otto Szász in 1950 and G. M. Mirakjan in 1941. They are defined by

=

where and .[1][2]

Basic results

In 1964, Cheney and Sharma showed that if is convex and non-linear, the sequence decreases with ().[3] They also showed that if is a polynomial of degree , then so is for all .

A converse of the first property was shown by Horová in 1968 (Altomare & Campiti 1994:350).

Theorem on convergence

In Szász's original paper, he proved the following:

If is continuous on , having a finite limit at infinity, then converges uniformly to as .[1]

This is analogous to a theorem stating that Bernstein polynomials approximate continuous functions on [0,1].

Generalizations

A Kantorovich-type generalization is sometimes discussed in the literature. These generalizations are also called the Szász–Mirakjan–Kantorovich operators.

In 1976, C. P. May showed that the Baskakov operators can reduce to the Szász–Mirakyan operators.[4]

References

Footnotes

  1. 1 2 Szász, Otto (1950). "Generalizations of S. Bernstein's polynomials to the infinite interval" (PDF). Journal of Research of the National Bureau of Standards. 45 (3): 239–245. doi:10.6028/jres.045.024.
  2. Walczak, Zbigniew (2003). "On modified Szasz–Mirakyan operators" (PDF). Novi Sad Journal of Mathematics. 33 (1): 93–107.
  3. Cheney, Edward W.; A. Sharma (1964). "Bernstein power series". Canadian Journal of Mathematics. 16 (2): 241–252. doi:10.4153/cjm-1964-023-1.
  4. May, C. P. (1976). "Saturation and inverse theorems for combinations of a class of exponential-type operators". Canadian Journal of Mathematics. 28 (6): 1224–1250. doi:10.4153/cjm-1976-123-8.
This article is issued from Wikipedia - version of the 10/6/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.