Unitary perfect number
A unitary perfect number is an integer which is the sum of its positive proper unitary divisors, not including the number itself. (A divisor d of a number n is a unitary divisor if d and n/d share no common factors.) Some perfect numbers are not unitary perfect numbers, and some unitary perfect numbers are not regular perfect numbers.
Examples
60 is a unitary perfect number, because 1, 3, 4, 5, 12, 15 and 20 are its proper unitary divisors, and 1 + 3 + 4 + 5 + 12 + 15 + 20 = 60. The first five, and only known, unitary perfect numbers are:
6, 60, 90, 87360, 146361946186458562560000 (sequence A002827 in the OEIS)
The respective sums of proper unitary divisors:
- 6 = 1 + 2 + 3
- 60 = 1 + 3 + 4 + 5 + 12 + 15 + 20
- 90 = 1 + 2 + 5 + 9 + 10 + 18 + 45
- 87360 = 1 + 3 + 5 + 7 + 13 + 15 + 21 + 35 + 39 + 64 + 65 + 91 + 105 + 192 + 195 + 273 + 320 + 448 + 455 + 832 + 960 + 1344 + 1365 + 2240 + 2496 + 4160 + 5824 + 6720 + 12480 + 17472 + 29120
- 146361946186458562560000 = 1 + 3 + 7 + 11 + ... 13305631471496232960000 + 20908849455208366080000 + 48787315395486187520000 (4095 divisors in the sum)
Properties
There are no odd unitary perfect numbers. This follows since one has 2d*(n) dividing the sum of the unitary divisors of an odd number (where d*(n) is the number of distinct prime divisors of n). One gets this because the sum of all the unitary divisors is a multiplicative function and one has the sum of the unitary divisors of a power of a prime pa is pa + 1 which is even for all odd primes p. Therefore, an odd unitary perfect number must have only one distinct prime factor, and it is not hard to show that a power of prime cannot be a unitary perfect number, since there are not enough divisors.
Unsolved problem in mathematics: Are there infinitely many unitary perfect numbers? (more unsolved problems in mathematics) |
It is not known whether or not there are infinitely many unitary perfect numbers, or indeed whether there are any further examples beyond the five already known. A sixth such number would have at least nine odd prime factors.[1]
References
- ↑ Wall, Charles R. (1988). "New unitary perfect numbers have at least nine odd components". Fibonacci Quarterly. 26 (4): 312–317. ISSN 0015-0517. MR 967649. Zbl 0657.10003.
- Richard K. Guy (2004). Unsolved Problems in Number Theory. Springer-Verlag. pp. 84–86. ISBN 0-387-20860-7. Section B3.
- Paulo Ribenboim (2000). My Numbers, My Friends: Popular Lectures on Number Theory. Springer-Verlag. p. 352. ISBN 0-387-98911-0.
- Sándor, József; Mitrinović, Dragoslav S.; Crstici, Borislav, eds. (2006). Handbook of number theory I. Dordrecht: Springer-Verlag. ISBN 1-4020-4215-9. Zbl 1151.11300.
- Sándor, Jozsef; Crstici, Borislav (2004). Handbook of number theory II. Dordrecht: Kluwer Academic. ISBN 1-4020-2546-7. Zbl 1079.11001.