Vogel plane

In mathematics, the Vogel plane is a method of parameterizing simple Lie algebras by eigenvalues α, β, γ of the Casimir operator on the symmetric square of the Lie algebra, which gives a point (α: β: γ) of P2/S3, the projective plane P2 divided out by the symmetric group S3 of permutations of coordinates. It was introduced by Vogel (1999), and is related by some observations made by Deligne (1996). Landsberg & Manivel (2006) generalized Vogel's work to higher symmetric powers.

The point of the projective plane (modulo permutations) corresponding to a simple complex Lie algebra is given by three eigenvalues α, β, γ of the Casimir operator acting on spaces A, B, C, where the symmetric square of the Lie algebra (usually) decomposes as a sum of the complex numbers and 3 irreducible spaces A, B, C.

See also

References

This article is issued from Wikipedia - version of the 2/24/2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.