Wiener's attack

The Wiener's attack, named after cryptologist Michael J. Wiener, is a type of cryptographic attack against RSA. The attack uses the continued fraction method to expose the private key d when d is small.

Background on RSA

Before we discuss how Wiener's attack works, we will first briefly explain how RSA works. For more details see the main entry on the RSA cryptosystem.
Let Alice and Bob be two people who want to communicate securely. More specifically, Alice wants to send a message to Bob which only Bob can read. First Bob chooses two primes p and q. Then he calculates the RSA modulus N = pq. This RSA modulus is made public together with the encryption exponent e. N and e form the public key pair (e,N). By making this information public, anyone can encrypt messages to Bob. The decryption exponent d satisfies , where , is Euler’s phi function (note: this is the order of the multiplicative group ). The encryption exponent e and also must be relatively prime so that there is a modular inverse. The factorization of N and the private key d are kept secret, so that only Bob can decrypt the message. We denote the private key pair as (d, N). The encryption of the message M is given by and the decryption of cipher text is given by (using Fermat's little theorem).

Using the Euclidean algorithm, one can efficiently recover the secret key d if one knows the factorization of N. By having the secret key d, one can efficiently factor the modulus of N.[1]

Small Private Key

In the RSA Cryptosystem, Bob might tend to use a small value of d, rather than a large random number to improve the RSA decryption performance. However, Wiener’s attack shows that choosing a small value for d will result in an insecure system in which an attacker can recover all secret information, i.e., break the RSA system. This break is based on Wiener’s Theorem, which holds for small values of d. Wiener has proved that the attacker may efficiently find d when .[2]

Wiener's paper also presented some countermeasures against his attack that allow fast decryption. Two techniques are described as follows.

Choosing large public key: Replace by , where for some large of . When is large enough, i.e. , then Wiener’s attack can not be applied regardless of how small is.

Using the Chinese Remainder Theorem: Suppose one chooses d such that both and are small but itself is not, then a fast decryption of can be done as follows:

1. First compute and .
2. Use the Chinese Remainder Theorem to compute the unique value of which satisfies and . The result of satisfies as needed. The point is that Wiener’s attack does not apply here because the value of can be large. [3]

How Wiener's attack works

Since

,

there exists an integer K such that

Define to be substituted in the equation above which gives:

Defining and , and substituting into the above gives:

.

Divided by :

, where .

So, is slightly smaller than , and the former is composed entirely of public information. However, a method of checking a guess is still required. Assuming that (a reasonable assumption unless is large) the last equation above may be written as:

By using simple algebraic manipulations and identities, a guess can be checked for accuracy. [1]

Wiener's theorem

Let with . Let .
Given with , the attacker can efficiently recover .[2]

Example

Suppose that the public keys are
The attack shall determine .
By using Wiener's Theorem and continued fractions to approximate , first we try to find the continued fractions expansion of . Note that this algorithm finds fractions in their lowest terms. We know that

According to the continued fractions expansion of , all convergents are:

We can verify that the first convergent does not produce a factorization of . However, the convergent yields

Now, if we solve the equation

then we find the roots which are . Therefore we have found the factorization

.

Notice that, for the modulus , Wiener's Theorem will work if

.

Proof of Wiener's theorem

The proof is based on approximations using continued fractions.[2][4]
Since , there exists a such that . Therefore

.

Hence, is an approximation of . Although the attacker does not know , he may use to approximate it. Indeed, since

and , we have:

Using in place of we obtain:

Now, , so . Since , so , then we obtain:

Since and . Hence we obtain:

(1)

Since then , we obtain:

, so (2)

From (1) and (2), we can conclude that

It is a theorem that if the condition above is satisfied, then appears among the convergents of . Therefore the algorithm will indeed eventually find .

References

Further reading

This article is issued from Wikipedia - version of the 11/27/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.