800 (number)
| ||||
---|---|---|---|---|
Cardinal | eight hundred | |||
Ordinal |
800th (eight hundredth) | |||
Factorization | 25× 52 | |||
Roman numeral | DCCC | |||
Binary | 11001000002 | |||
Ternary | 10021223 | |||
Quaternary | 302004 | |||
Quinary | 112005 | |||
Senary | 34126 | |||
Octal | 14408 | |||
Duodecimal | 56812 | |||
Hexadecimal | 32016 | |||
Vigesimal | 20020 | |||
Base 36 | M836 |
800 (eight hundred) is the natural number following 799 and preceding 801.
It is the sum of four consecutive primes (193 + 197 + 199 + 211). It is a Harshad number.
801 = 32 × 89, Harshad number
802 = 2 × 401, sum of eight consecutive primes (83 + 89 + 97 + 101 + 103 + 107 + 109 + 113), nontotient, happy number
803 = 11 × 73, sum of three consecutive primes (263 + 269 + 271), sum of nine consecutive primes (71 + 73 + 79 + 83 + 89 + 97 + 101 + 103 + 107), Harshad number
804 = 22 × 3 × 67, nontotient, Harshad number
- "The 804" is a local nickname for the Greater Richmond Region of the U.S. state of Virginia, derived from its telephone area code (although the area code covers a larger area).
805 = 5 × 7 × 23
806 = 2 × 13 × 31, sphenic number, nontotient, totient sum for first 51 integers, happy number
807 = 3 × 269
808 = 23 × 101, strobogrammatic number[1]
809 prime number, Sophie Germain prime,[2] Chen prime, Eisenstein prime with no imaginary part
810 = 2 × 34 × 5, Harshad number
811 prime number, sum of five consecutive primes (151 + 157 + 163 + 167 + 173), Chen prime, happy number, the Mertens function of 811 returns 0
812 = 22 × 7 × 29, pronic number,[3] the Mertens function of 812 returns 0
813 = 3 × 271
814 = 2 × 11 × 37, sphenic number, the Mertens function of 814 returns 0, nontotient
815 = 5 × 163
816 = 24 × 3 × 17, tetrahedral number,[4] Padovan number,[5] Zuckerman number
817 = 19 × 43, sum of three consecutive primes (269 + 271 + 277), centered hexagonal number[6]
818 = 2 × 409, nontotient, strobogrammatic number[1]
819 = 32 × 7 × 13, square pyramidal number[7]
820 = 22 × 5 × 41, triangular number,[8] Harshad number, happy number, repdigit (1111) in base 9
821 prime number, twin prime, Eisenstein prime with no imaginary part, prime quadruplet with 823, 827, 829
822 = 2 × 3 × 137, sum of twelve consecutive primes (43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 + 97), sphenic number, member of the Mian–Chowla sequence[9]
823 prime number, twin prime, the Mertens function of 823 returns 0, prime quadruplet with 821, 827, 829
824 = 23 × 103, sum of ten consecutive primes (61 + 67 + 71 + 73 + 79 + 83 + 89 + 97 + 101 + 103), the Mertens function of 824 returns 0, nontotient
825 = 3 × 52 × 11, Smith number,[10] the Mertens function 825 returns 0, Harshad number
826 = 2 × 7 × 59, sphenic number
827 prime number, twin prime, part of prime quadruplet with {821, 823, 829}, sum of seven consecutive primes (103 + 107 + 109 + 113 + 127 + 131 + 137), Chen prime, Eisenstein prime with no imaginary part, strictly non-palindromic number[11]
828 = 22 × 32 × 23, Harshad number
829 prime number, twin prime, part of prime quadruplet with {827, 823, 821}, sum of three consecutive primes (271 + 277 + 281), Chen prime
830 = 2 × 5 × 83, sphenic number, sum of four consecutive primes (197 + 199 + 211 + 223), nontotient, totient sum for first 52 integers
831 = 3 × 277
832 = 26 × 13, Harshad number
833 = 72 × 17
834 = 2 × 3 × 139, sphenic number, sum of six consecutive primes (127 + 131 + 137 + 139 + 149 + 151), nontotient
835 = 5 × 167, Motzkin number[12]
836 = 22 × 11 × 19, weird number
837 = 33 × 31
838 = 2 × 419
839 prime number, safe prime,[13] sum of five consecutive primes (157 + 163 + 167 + 173 + 179), Chen prime, Eisenstein prime with no imaginary part, highly cototient number[14]
840 = 23 × 3 × 5 × 7, highly composite number,[15] smallest numbers divisible by the numbers 1 to 8 (lowest common multiple of 1 to 8), sparsely totient number,[16] Harshad number in base 2 through base 10
841 = 292 = 202 + 212, sum of three consecutive primes (277 + 281 + 283), sum of nine consecutive primes (73 + 79 + 83 + 89 + 97 + 101 + 103 + 107 + 109), centered square number,[17] centered heptagonal number,[18] centered octagonal number[19]
842 = 2 × 421, nontotient
843 = 3 × 281, Lucas number[20]
844 = 22 × 211, nontotient
845 = 5 × 132
846 = 2 × 32 × 47, sum of eight consecutive primes (89 + 97 + 101 + 103 + 107 + 109 + 113 + 127), nontotient, Harshad number
847 = 7 × 112, happy number
848 = 24 × 53
849 = 3 × 283, the Mertens function of 849 returns 0
850 = 2 × 52 × 17, the Mertens function 850 returns 0, nontotient, the maximum possible Fair Isaac credit score, country calling code for North Korea
851 = 23 × 37
852 = 22 × 3 × 71, pentagonal number,[21] Smith number[10]
- country calling code for Hong Kong
853 prime number, Perrin number,[22] the Mertens function of 853 returns 0, average of first 853 prime numbers is an integer (sequence A045345 in the OEIS), strictly non-palindromic number, number of connected graphs with 7 nodes
- country calling code for Macau
854 = 2 × 7 × 61, nontotient
855 = 32 × 5 × 19, decagonal number,[23] centered cube number[24]
- country calling code for Cambodia
856 = 23 × 107, nonagonal number,[25] centered pentagonal number,[26] happy number
- country calling code for Laos
857 prime number, sum of three consecutive primes (281 + 283 + 293), Chen prime, Eisenstein prime with no imaginary part
858 = 2 × 3 × 11 × 13, Giuga number[27]
859 prime number
860 = 22 × 5 × 43, sum of four consecutive primes (199 + 211 + 223 + 227)
861 = 3 × 7 × 41, sphenic number, triangular number,[8] hexagonal number,[28] Smith number[10]
862 = 2 × 431
863 prime number, safe prime,[13] sum of five consecutive primes (163 + 167 + 173 + 179 + 181), sum of seven consecutive primes (107 + 109 + 113 + 127 + 131 + 137 + 139), Chen prime, Eisenstein prime with no imaginary part
864 = 25 × 33, sum of a twin prime (431 + 433), sum of six consecutive primes (131 + 137 + 139 + 149 + 151 + 157), Harshad number
865 = 5 × 173,
866 = 2 × 433, nontotient
867 = 3 × 172
868 = 22 × 7 × 31, nontotient
869 = 11 × 79, the Mertens function 869 returns 0
870 = 2 × 3 × 5 × 29, sum of ten consecutive primes (67 + 71 + 73 + 79 + 83 + 89 + 97 + 101 + 103 + 107), pronic number,[3] nontotient, sparsely totient number,[16] Harshad number
This number is the magic constant of n×n normal magic square and n-queens problem for n = 12.
871 = 13 × 67
872 = 23 × 109, nontotient
873 = 32 × 97, sum of the first six factorials from 1
874 = 2 × 19 × 23, sum of the first twenty-three primes, sum of the first seven factorials from 0, nontotient, Harshad number, happy number
875 = 53 × 7
876 = 22 × 3 × 73
877 prime number, Bell number,[29] Chen prime, the Mertens function of 877 returns 0, strictly non-palindromic number.[11]
878 = 2 × 439, nontotient
879 = 3 × 293
880 = 24 × 5 × 11, Harshad number; 148-gonal number; the number of n×n magic squares for n = 4.
- country calling code for Bangladesh
881 prime number, twin prime, sum of nine consecutive primes (79 + 83 + 89 + 97 + 101 + 103 + 107 + 109 + 113), Chen prime, Eisenstein prime with no imaginary part
882 = 2 × 32 × 72, Harshad number, totient sum for first 53 integers
883 prime number, twin prime, sum of three consecutive primes (283 + 293 + 307), the Mertens function of 883 returns 0, happy number
884 = 22 × 13 × 17, the Mertens function 884 returns 0
885 = 3 × 5 × 59, sphenic number
886 = 2 × 443, the Mertens function of 886 returns 0
- country calling code for Taiwan
887 prime number followed by primal gap of 20, safe prime,[13] Chen prime, Eisenstein prime with no imaginary part
888 = 23 × 3 × 37, sum of eight consecutive primes (97 + 101 + 103 + 107 + 109 + 113 + 127 + 131), Harshad number, strobogrammatic number[1]
889 = 7 × 127, the Mertens function of 889 returns 0
890 = 2 × 5 × 89, sphenic number, sum of four consecutive primes (211 + 223 + 227 + 229), nontotient
891 = 34 × 11, sum of five consecutive primes (167 + 173 + 179 + 181 + 191), octahedral number
892 = 22 × 223, nontotient
893 = 19 × 47, the Mertens function 893 returns 0
- Considered an unlucky number in Japan, because its digits read sequentially are the literal translation of yakuza.
894 = 2 × 3 × 149, sphenic number, nontotient
895 = 5 × 179, Smith number,[10] Woodall number,[30] the Mertens function 895 returns 0
896 = 27 × 7, sum of six consecutive primes (137 + 139 + 149 + 151 + 157 + 163), the Mertens function 896 returns 0
897 = 3 × 13 × 23, sphenic number
898 = 2 × 449, the Mertens function of 898 returns 0, nontotient
899 = 29 × 31, happy number
References
- 1 2 3 "Sloane's A000787 : Strobogrammatic numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ "Sloane's A005384 : Sophie Germain primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- 1 2 "Sloane's A002378 : Oblong (or promic, pronic, or heteromecic) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ "Sloane's A000931 : Padovan sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ "Sloane's A003215 : Hex (or centered hexagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ "Sloane's A000330 : Square pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- 1 2 "Sloane's A000217 : Triangular numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ "Sloane's A005282 : Mian-Chowla sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- 1 2 3 4 "Sloane's A006753 : Smith numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- 1 2 "Sloane's A016038 : Strictly non-palindromic numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ "Sloane's A001006 : Motzkin numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- 1 2 3 "Sloane's A005385 : Safe primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ "Sloane's A100827 : Highly cototient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ "Sloane's A002182 : Highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- 1 2 "Sloane's A036913 : Sparsely totient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ "Sloane's A001844 : Centered square numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ "Sloane's A069099 : Centered heptagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ "Sloane's A016754 : Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ "Sloane's A000032 : Lucas numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ "Sloane's A000326 : Pentagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ "Sloane's A001608 : Perrin sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ "Sloane's A001107 : 10-gonal (or decagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ "Sloane's A005898 : Centered cube numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ "Sloane's A001106 : 9-gonal (or enneagonal or nonagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ "Sloane's A005891 : Centered pentagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ "Sloane's A007850 : Giuga numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ "Sloane's A000384 : Hexagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ "Sloane's A000110 : Bell or exponential numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ "Sloane's A003261 : Woodall numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.