BTRC (gene)

BTRC
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
Aliases BTRC, BETA-TRCP, FBW1A, FBXW1, FBXW1A, FWD1, bTrCP, bTrCP1, betaTrCP, beta-transducin repeat containing E3 ubiquitin protein ligase
External IDs MGI: 1338871 HomoloGene: 39330 GeneCards: BTRC
Orthologs
Species Human Mouse
Entrez

8945

12234

Ensembl

ENSG00000166167

ENSMUSG00000025217

UniProt

Q9Y297
Q5T1W7

Q3ULA2

RefSeq (mRNA)

NM_001256856
NM_003939
NM_033637

NM_001037758
NM_001286465
NM_001286466
NM_009771

RefSeq (protein)

NP_003930.1
NP_378663.1

NP_001032847.2
NP_001273394.1
NP_001273395.1
NP_033901.1

Location (UCSC) Chr 10: 101.35 – 101.56 Mb Chr 19: 45.36 – 45.53 Mb
PubMed search [1] [2]
Wikidata
View/Edit HumanView/Edit Mouse

F-box/WD repeat-containing protein 1A (FBXW1A) also known as βTrCP1 or Fbxw1 or hsSlimb or pIkappaBalpha-E3 receptor subunit is a protein that in humans is encoded by the BTRC (beta-transducin repeat containing) gene.[3][4]

This gene encodes a member of the F-box protein family which is characterized by an approximately 40 residue structural motif, the F-box. The F-box proteins constitute one of the four subunits of ubiquitin protein ligase complex called SCFs (Skp1-Cul1-F-box protein), which often, but not always, recognize substrates in a phosphorylation-dependent manner. F-box proteins are divided into 3 classes:

The protein encoded by this gene belongs to the Fbxw class as, in addition to an F-box, this protein contains multiple WD40 repeats. This protein is homologous to Xenopus βTrCP, yeast Met30, Neurospora Scon2 and Drosophila Slimb. In mammals, in addition to βTrCP1, a paralog protein (called βTrCP2 or FBXW11) also exists, but, so far, their functions appear redundant and indistinguishable.

Discovery

Human βTrCP (referred to both βTrCP1 and βTrCP2) was originally identified as a cellular ubiquitin ligase that is bound by the HIV-1 Vpu viral protein to eliminate cellular CD4 by connecting it to the proteolytic machinery.[5] Subsequently, βTrCP was shown to regulate multiple cellular processes by mediating the degradation of various targets.[6] Cell cycle regulators constitute a major group of βTrCP substrates. During S phase, βTrCP keeps CDK1 in check by promoting the degradation of the phosphatase CDC25A,[7] whereas in G2, βTrCP contributes to CDK1 activation by targeting the kinase WEE1 for degradation.[8] In early mitosis, βTrCP mediates the degradation of EMI1,[9][10] an inhibitor of the APC/C ubiquitin ligase complex, which is responsible for the anaphase-metaphase transition (by inducing the proteolysis of Securin) and mitotic exit (by driving the degradation of mitotic CDK1 activating cyclin subunits). Furthermore, βTrCP controls APC/C by targeting REST, thereby removing its transcriptional repression on MAD2, an essential component of the spindle assembly checkpoint that keeps APC/C inactive until all chromatids are attached to the spindle microtubles.[11]

Function

βTrCP plays important roles in regulating cell cycle checkpoints. In response to genotoxic stress, it contributes to turn off CDK1 activity by mediating the degradation of CDC25A in collaboration with Chk1,[7][12] thereby preventing cell cycle progression before the completion of DNA repair. During recovery from DNA replication and DNA damage, βTrCP instead targets Claspin in a Plk1-dependent manner.[13][14][15]

βTrCP has also emerged as an important player in protein translation, cell grow and survival. In response to mitogens, PDCD4, an inhibitor of the translation initiation factor eIF4A, is rapidly degraded in a βTrCP- and S6K1-dependent manner, allowing efficient protein translation and cell growth.[16] βTrCP also cooperates with mTOR and CK1α to induce the degradation of DEPTOR (an mTOR inhibitor), thereby generating an auto-amplification loop to promote the full activation of mTOR.[17][18][19] At the same time, βTrCP mediates the degradation of the pro-apoptotic protein BimEL to promote cell survival.[20]

βTrCP also associates with phosphorylated IkappaBalpha and beta-catenin destruction motifs, probably functioning in multiple transcriptional programs by regulating the NF-kappaB and the WNT pathways.[21][22]

Interactions

BTRC (gene) has been shown to interact with:

Clinical Significance

βTrCP behaves as an oncoprotein in some tissues. Elevated levels of βTrCP expression have been found in colorectal,[35] pancreatic,[36] hapatoblastoma,[37] and breast cancers.[38]

References

  1. "Human PubMed Reference:".
  2. "Mouse PubMed Reference:".
  3. Fujiwara T, Suzuki M, Tanigami A, Ikenoue T, Omata M, Chiba T, Tanaka K (Jul 1999). "The BTRC gene, encoding a human F-box/WD40-repeat protein, maps to chromosome 10q24-q25". Genomics. 58 (1): 104–105. doi:10.1006/geno.1999.5792. PMID 10331953.
  4. "Entrez Gene: BTRC beta-transducin repeat containing".
  5. 1 2 Margottin F, Bour SP, Durand H, Selig L, Benichou S, Richard V, Thomas D, Strebel K, Benarous R (Jul 1998). "A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif". Mol Cell. 1 (4): 565–574. doi:10.1016/S1097-2765(00)80056-8. PMID 9660940.
  6. Frescas, D.; Pagano, M. (2008). "Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: Tipping the scales of cancer". Nature Reviews Cancer. 8 (6): 438–449. doi:10.1038/nrc2396. PMC 2711846Freely accessible. PMID 18500245.
  7. 1 2 3 Busino, L.; Donzelli, M.; Chiesa, M.; Guardavaccaro, D.; Ganoth, D.; Dorrello, N.; Hershko, A.; Pagano, M.; Draetta, G. F. (2003). "Degradation of Cdc25A by β-TrCP during S phase and in response to DNA damage". Nature. 426 (6962): 87–91. doi:10.1038/nature02082. PMID 14603323.
  8. 1 2 Watanabe, N.; Arai, H.; Nishihara, Y.; Taniguchi, M.; Watanabe, N.; Hunter, T.; Osada, H. (2004). "M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFβ-TrCP". Proceedings of the National Academy of Sciences. 101 (13): 4419–4424. doi:10.1073/pnas.0307700101. PMC 384762Freely accessible. PMID 15070733.
  9. 1 2 3 Guardavaccaro, D.; Kudo, Y.; Boulaire, J.; Barchi, M.; Busino, L.; Donzelli, M.; Margottin-Goguet, F.; Jackson, P. K.; Yamasaki, L.; Pagano, M. (2003). "Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo". Developmental Cell. 4 (6): 799–812. doi:10.1016/S1534-5807(03)00154-0. PMID 12791266.
  10. 1 2 Margottin-Goguet, F.; Hsu, J. Y.; Loktev, A.; Hsieh, H. M.; Reimann, J. D.; Jackson, P. K. (2003). "Prophase destruction of Emi1 by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase". Developmental Cell. 4 (6): 813–826. doi:10.1016/S1534-5807(03)00153-9. PMID 12791267.
  11. Guardavaccaro, D.; Frescas, D.; Dorrello, N. V.; Peschiaroli, A.; Multani, A. S.; Cardozo, T.; Lasorella, A.; Iavarone, A.; Chang, S.; Hernando, E.; Pagano, M. (2008). "Control of chromosome stability by the β-TrCP–REST–Mad2 axis". Nature. 452 (7185): 365–369. doi:10.1038/nature06641. PMC 2707768Freely accessible. PMID 18354482.
  12. 1 2 Jin, J.; Shirogane, T.; Xu, L.; Nalepa, G.; Qin, J.; Elledge, S. J.; Harper, J. W. (2003). "SCFβ-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase". Genes & Development. 17 (24): 3062–3074. doi:10.1101/gad.1157503. PMC 305258Freely accessible. PMID 14681206.
  13. 1 2 Peschiaroli, A.; Dorrello, N. V.; Guardavaccaro, D.; Venere, M.; Halazonetis, T.; Sherman, N. E.; Pagano, M. (2006). "SCFβTrCP-Mediated Degradation of Claspin Regulates Recovery from the DNA Replication Checkpoint Response". Molecular Cell. 23 (3): 319–329. doi:10.1016/j.molcel.2006.06.013. PMID 16885022.
  14. 1 2 Mailand, N.; Bekker-Jensen, S.; Bartek, J.; Lukas, J. (2006). "Destruction of Claspin by SCFβTrCP Restrains Chk1 Activation and Facilitates Recovery from Genotoxic Stress". Molecular Cell. 23 (3): 307–318. doi:10.1016/j.molcel.2006.06.016. PMID 16885021.
  15. 1 2 Mamely, I.; Van Vugt, M. A. M.; Smits, V. A.; Semple, J. I.; Lemmens, B.; Perrakis, A.; Medema, R. H.; Freire, R. (2006). "Polo-like Kinase-1 Controls Proteasome-Dependent Degradation of Claspin during Checkpoint Recovery". Current Biology. 16 (19): 1950–1955. doi:10.1016/j.cub.2006.08.026. PMID 16934469.
  16. 1 2 Dorrello, N. V.; Peschiaroli, A.; Guardavaccaro, D.; Colburn, N. H.; Sherman, N. E.; Pagano, M. (2006). "S6K1- and TRCP-Mediated Degradation of PDCD4 Promotes Protein Translation and Cell Growth". Science. 314 (5798): 467–471. doi:10.1126/science.1130276. PMID 17053147.
  17. 1 2 Duan, S.; Skaar, J. R.; Kuchay, S.; Toschi, A.; Kanarek, N.; Ben-Neriah, Y.; Pagano, M. (2011). "MTOR Generates an Auto-Amplification Loop by Triggering the βTrCP- and CK1α-Dependent Degradation of DEPTOR". Molecular Cell. 44 (2): 317–324. doi:10.1016/j.molcel.2011.09.005. PMC 3212871Freely accessible. PMID 22017877.
  18. 1 2 Zhao, Y.; Xiong, X.; Sun, Y. (2011). "DEPTOR, an mTOR Inhibitor, is a Physiological Substrate of SCFβTrCP E3 Ubiquitin Ligase and Regulates Survival and Autophagy". Molecular Cell. 44 (2): 304–316. doi:10.1016/j.molcel.2011.08.029. PMC 3216641Freely accessible. PMID 22017876.
  19. 1 2 Gao, D.; Inuzuka, H.; Tan, M. K. M.; Fukushima, H.; Locasale, J. W.; Liu, P.; Wan, L.; Zhai, B.; Chin, Y. R.; Shaik, S.; Lyssiotis, C. A.; Gygi, S. P.; Toker, A.; Cantley, L. C.; Asara, J. M.; Harper, J. W.; Wei, W. (2011). "MTOR Drives Its Own Activation via SCFβTrCP-Dependent Degradation of the mTOR Inhibitor DEPTOR". Molecular Cell. 44 (2): 290–303. doi:10.1016/j.molcel.2011.08.030. PMC 3229299Freely accessible. PMID 22017875.
  20. 1 2 Dehan, E.; Bassermann, F.; Guardavaccaro, D.; Vasiliver-Shamis, G.; Cohen, M.; Lowes, K. N.; Dustin, M.; Huang, D. C. S.; Taunton, J.; Pagano, M. (2009). "ΒTrCP- and Rsk1/2-mediated degradation of BimEL inhibits apoptosis". Molecular Cell. 33 (1): 109–116. doi:10.1016/j.molcel.2008.12.020. PMC 2655121Freely accessible. PMID 19150432.
  21. Winston, J. T.; Strack, P.; Beer-Romero, P.; Chu, C. Y.; Elledge, S. J.; Harper, J. W. (1999). "The SCFβ-TRCP–ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro". Genes & Development. 13 (3): 270–283. doi:10.1101/gad.13.3.270. PMC 316433Freely accessible. PMID 9990852.
  22. 1 2 Latres, E.; Chiaur, D. S.; Pagano, M. (1999). "The human F box protein β-Trcp associates with the Cul1/Skp1 complex and regulates the stability of β-catenin". Oncogene. 18 (4): 849–854. doi:10.1038/sj.onc.1202653. PMID 10023660.
  23. Liu, C.; Kato, Y.; Zhang, Z.; Do, V. M.; Yankner, B. A.; He, X. (1999). "Β-Trcp couples β-catenin phosphorylation-degradation and regulates Xenopus axis formation". Proceedings of the National Academy of Sciences of the United States of America. 96 (11): 6273–6278. doi:10.1073/pnas.96.11.6273. PMC 26871Freely accessible. PMID 10339577.
  24. 1 2 3 Cenciarelli, C.; Chiaur, D. S.; Guardavaccaro, D.; Parks, W.; Vidal, M.; Pagano, M. (1999). "Identification of a family of human F-box proteins". Current Biology. 9 (20): 1177–1179. doi:10.1016/S0960-9822(00)80020-2. PMID 10531035.
  25. Semplici F, Meggio F, Pinna LA, Oliviero S (June 2002). "CK2-dependent phosphorylation of the E2 ubiquitin conjugating enzyme UBC3B induces its interaction with beta-TrCP and enhances beta-catenin degradation". Oncogene. 21 (25): 3978–87. doi:10.1038/sj.onc.1205574. PMID 12037680.
  26. 1 2 3 4 Suzuki H, Chiba T, Suzuki T, Fujita T, Ikenoue T, Omata M, Furuichi K, Shikama H, Tanaka K (January 2000). "Homodimer of two F-box proteins betaTrCP1 or betaTrCP2 binds to IkappaBalpha for signal-dependent ubiquitination". J. Biol. Chem. 275 (4): 2877–84. doi:10.1074/jbc.275.4.2877. PMID 10644755.
  27. 1 2 Min, K. -W.; Hwang, J. W.; Lee, J. S.; Park, Y.; Tamura, T. A.; Yoon, J. B. (2003). "TIP120A Associates with Cullins and Modulates Ubiquitin Ligase Activity". Journal of Biological Chemistry. 278 (18): 15905–15910. doi:10.1074/jbc.M213070200. PMID 12609982.
  28. Mantovani F, Banks L (October 2003). "Regulation of the discs large tumor suppressor by a phosphorylation-dependent interaction with the beta-TrCP ubiquitin ligase receptor". J. Biol. Chem. 278 (43): 42477–86. doi:10.1074/jbc.M302799200. PMID 12902344.
  29. 1 2 Spencer E, Jiang J, Chen ZJ (February 1999). "Signal-induced ubiquitination of IkappaBalpha by the F-box protein Slimb/beta-TrCP". Genes Dev. 13 (3): 284–94. doi:10.1101/gad.13.3.284. PMC 316434Freely accessible. PMID 9990853.
  30. Fong A, Sun SC (June 2002). "Genetic evidence for the essential role of beta-transducin repeat-containing protein in the inducible processing of NF-kappa B2/p100". J. Biol. Chem. 277 (25): 22111–4. doi:10.1074/jbc.C200151200. PMID 11994270.
  31. Vatsyayan J, Qing G, Xiao G, Hu J (September 2008). "SUMO1 modification of NF-kappaB2/p100 is essential for stimuli-induced p100 phosphorylation and processing". EMBO Rep. 9 (9): 885–90. doi:10.1038/embor.2008.122. PMC 2529344Freely accessible. PMID 18617892.
  32. Westbrook, T. F.; Hu, G.; Ang, X. L.; Mulligan, P.; Pavlova, N. N.; Liang, A.; Leng, Y.; Maehr, R.; Shi, Y.; Harper, J. W.; Elledge, S. J. (2008). "SCFβTRCPControls Oncogenic Transformation and Neural Differentiation Through REST Degradation". Nature. 452 (7185): 370–374. doi:10.1038/nature06780. PMC 2688689Freely accessible. PMID 18354483.
  33. Strack, P.; Caligiuri, M.; Pelletier, M.; Boisclair, M.; Theodoras, A.; Beer-Romero, P.; Glass, S.; Parsons, T.; Copeland, R. A.; Auger, K. R.; Benfield, P.; Brizuela, L.; Rolfe, M. (2000). "SCFβ-TRCP and phosphorylation dependent ubiquitination of IκBα catalyzed by Ubc3 and Ubc4". Oncogene. 19 (31): 3529–3536. doi:10.1038/sj.onc.1203647. PMID 10918611.
  34. "Molecular Interaction Database".
  35. Ougolkov, A.; Zhang, B.; Yamashita, K.; Bilim, V.; Mai, M.; Fuchs, S. Y.; Minamoto, T. (2004). "Associations Among -TrCP, an E3 Ubiquitin Ligase Receptor, -Catenin, and NF- B in Colorectal Cancer". JNCI Journal of the National Cancer Institute. 96 (15): 1161–1170. doi:10.1093/jnci/djh219.
  36. Muerkoster, S.; Arlt, A.; Sipos, B.; Witt, M.; Grossmann, M.; Klöppel, G.; Kalthoff, H.; Fölsch, U. R.; Schäfer, H. (2005). "Increased Expression of the E3-Ubiquitin Ligase Receptor Subunit TRCP1 Relates to Constitutive Nuclear Factor- B Activation and Chemoresistance in Pancreatic Carcinoma Cells". Cancer Research. 65 (4): 1316–1324. doi:10.1158/0008-5472.CAN-04-1626. PMID 15735017.
  37. Koch, A.; Waha, A.; Hartmann, W.; Hrychyk, A.; Schüller, U.; Waha, A.; Wharton Jr, K. A.; Fuchs, S. Y.; Von Schweinitz, D.; Pietsch, T. (2005). "Elevated Expression of Wnt Antagonists is a Common Event in Hepatoblastomas". Clinical Cancer Research. 11 (12): 4295–4304. doi:10.1158/1078-0432.CCR-04-1162. PMID 15958610.
  38. Spiegelman, V. S.; Tang, W.; Chan, A. M.; Igarashi, M.; Aaronson, S. A.; Sassoon, D. A.; Katoh, M.; Slaga, T. J.; Fuchs, S. Y. (2002). "Induction of Homologue of Slimb Ubiquitin Ligase Receptor by Mitogen Signaling". Journal of Biological Chemistry. 277 (39): 36624–36630. doi:10.1074/jbc.M204524200. PMID 12151397.

Further reading

This article is issued from Wikipedia - version of the 6/7/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.