Heine–Stieltjes polynomials

For the orthogonal polynomials, see Stieltjes-Wigert polynomial. For the polynomials associated to a family of orthogonal polynomials, see Stieltjes polynomials.

In mathematics, the Heine–Stieltjes polynomials or Stieltjes polynomials, introduced by T. J. Stieltjes (1885), are polynomial solutions of a second-order Fuchsian equation, a differential equation all of whose singularities are regular. The Fuchsian equation has the form

for some polynomial V(z) of degree at most N  2, and if this has a polynomial solution S then V is called a Van Vleck polynomial (after Edward Burr Van Vleck) and S is called a Heine–Stieltjes polynomial.

Heun polynomials are the special cases of Stieltjes polynomials when the differential equation has four singular points.

References

This article is issued from Wikipedia - version of the 1/27/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.