Killing–Hopf theorem

In geometry, the Killing–Hopf theorem states that complete connected Riemannian manifolds of constant curvature are isometric to a quotient of a sphere, Euclidean space, or hyperbolic space by a group acting freely and properly discontinuously. These manifolds are called space forms. The Killing–Hopf theorem was proved by Killing (1891) and Hopf (1926).

References

This article is issued from Wikipedia - version of the 4/2/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.