Pentellated 8-simplexes
8-simplex |
Pentellated 8-simplex |
Bipentitruncated 8-simplex |
Orthogonal projections in A8 Coxeter plane |
---|
In eight-dimensional geometry, a pentellated 8-simplex is a convex uniform 8-polytope with 5th order truncations of the regular 8-simplex.
There are two unique pentellations of the 8-simplex. Including truncations, canetellations, runcinations, and sterications, there are 32 more pentellations. These polytopes are a part of a family 135 uniform 8-polytopes with A8 symmetry. A8, [38] has order 9 factorial symmetry, or 362880. The bipentalled form is symmetrically ringed, doubling the symmetry order to 725760, and is represented the double-bracketed group [[3<sup>8</sup>]]. The A8 Coxeter plane projection shows order [9] symmetry for the pentellated 8-simplex, while the bipentellated 8-simple is doubled to [18] symmetry.
Pentellated 8-simplex
Pentellated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | t0,5{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 5040 |
Vertices | 504 |
Vertex figure | |
Coxeter group | A8, [37], order 362880 |
Properties | convex |
Coordinates
The Cartesian coordinates of the vertices of the pentellated 8-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,1,1,1,2). This construction is based on facets of the pentellated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry | [5] | [4] | [3] |
Bipentellated 8-simplex
Bipentellated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | t1,6{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
7-faces | t0,5{3,3,3,3,3,3} |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 7560 |
Vertices | 756 |
Vertex figure | |
Coxeter group | A8×2, [[3<sup>7</sup>]], order 725760 |
Properties | convex, facet-transitive |
Coordinates
The Cartesian coordinates of the vertices of the bipentellated 8-simplex can be most simply positioned in 8-space as permutations of (0,0,1,1,1,1,1,2,2). This construction is based on facets of the bipentellated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | [[9]] = [18] | [8] | [[7]] = [14] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry | [[5]] = [10] | [4] | [[3]] = [6] |
Related polytopes
This polytope is one of 135 uniform 8-polytopes with A8 symmetry.
A8 polytopes | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
t0 |
t1 |
t2 |
t3 |
t01 |
t02 |
t12 |
t03 |
t13 |
t23 |
t04 |
t14 |
t24 |
t34 |
t05 |
t15 |
t25 |
t06 |
t16 |
t07 |
t012 |
t013 |
t023 |
t123 |
t014 |
t024 |
t124 |
t034 |
t134 |
t234 |
t015 |
t025 |
t125 |
t035 |
t135 |
t235 |
t045 |
t145 |
t016 |
t026 |
t126 |
t036 |
t136 |
t046 |
t056 |
t017 |
t027 |
t037 |
t0123 |
t0124 |
t0134 |
t0234 |
t1234 |
t0125 |
t0135 |
t0235 |
t1235 |
t0145 |
t0245 |
t1245 |
t0345 |
t1345 |
t2345 |
t0126 |
t0136 |
t0236 |
t1236 |
t0146 |
t0246 |
t1246 |
t0346 |
t1346 |
t0156 |
t0256 |
t1256 |
t0356 |
t0456 |
t0127 |
t0137 |
t0237 |
t0147 |
t0247 |
t0347 |
t0157 |
t0257 |
t0167 |
t01234 |
t01235 |
t01245 |
t01345 |
t02345 |
t12345 |
t01236 |
t01246 |
t01346 |
t02346 |
t12346 |
t01256 |
t01356 |
t02356 |
t12356 |
t01456 |
t02456 |
t03456 |
t01237 |
t01247 |
t01347 |
t02347 |
t01257 |
t01357 |
t02357 |
t01457 |
t01267 |
t01367 |
t012345 |
t012346 |
t012356 |
t012456 |
t013456 |
t023456 |
t123456 |
t012347 |
t012357 |
t012457 |
t013457 |
t023457 |
t012367 |
t012467 |
t013467 |
t012567 |
t0123456 |
t0123457 |
t0123467 |
t0123567 |
t01234567 |
Notes
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- Klitzing, Richard. "8D uniform polytopes (polyzetta)". x3o3o3o3o3x3o3o, o3x3o3o3o3o3x3o
External links
- Olshevsky, George. "Cross polytope". Glossary for Hyperspace. Archived from the original on 4 February 2007.
- Polytopes of Various Dimensions
- Multi-dimensional Glossary
Fundamental convex regular and uniform polytopes in dimensions 2–10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | An | Bn | I2(p) / Dn | E6 / E7 / E8 / E9 / E10 / F4 / G2 | Hn | |||||||
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform 4-polytope | 5-cell | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds |