Timeline of scientific computing

The following is a timeline of scientific computing, also known as computational science.

Before modern computers

18th century

19th century

1900s

1920s

1930s

This decade marks the first major strides to a modern computer, and hence the start of the modern era.

1940s

1950s

1960s

1970s

1980s

1990s

2000s

2010s

Miscellaneous

See also

References

  1. Buffon, G. Editor's note concerning a lecture given 1733 by Mr. Le Clerc de Buffon to the Royal Academy of Sciences in Paris. Histoire de l'Acad. Roy. des Sci., pp. 43-45, 1733; according to Weisstein, Eric W. "Buffon's Needle Problem." From MathWorld--A Wolfram Web Resource. 20 Dec 2012 20 Dec 2012.
  2. Buffon, G. "Essai d'arithmétique morale." Histoire naturelle, générale er particulière, Supplément 4, 46-123, 1777; according to Weisstein, Eric W. "Buffon's Needle Problem." From MathWorld--A Wolfram Web Resource. 20 Dec 2012
  3. Simonite, Tom (24 March 2009). "Short Sharp Science: Celebrating Ada Lovelace: the 'world's first programmer'". New Scientist. Retrieved 14 April 2012.
  4. http://www.newyorker.com/online/blogs/books/2013/08/tom-stoppards-arcadia-at-twenty.html
  5. Kim, Eugene Eric; Toole, Betty Alexandra (May 1999). "Ada and the first computer". Scientific American. 280 (5): 70–71. doi:10.1038/scientificamerican0599-76.
  6. MW Kutta (1900). "Beiträge zur näherungsweisen Integration totaler Differentialgleichungen" [Contributions to the approximate integration of total differential equations] (in German). Thesis, University of Munich.
  7. Runge, C., "Über die numerische Auflösung von Differentialgleichungen" [About the numerical solution of differential equations](in German), Math. Ann. 46 (1895) 167-178.
  8. L F Richardson, Weather Prediction by Numerical Process. Cambridge University Press (1922).
  9. Metropolis, N. (1987). "The Beginning of the Monte Carlo method" (PDF). Los Alamos Science. No. 15, Page 125.. Accessed 5 may 2012.
  10. S. Ulam, R. D. Richtmyer, and J. von Neumann(1947). Statistical methods in neutron diffusion. Los Alamos Scientific Laboratory report LAMS–551.
  11. Metropolis, N.; Ulam, S. (1949). "The Monte Carlo method". Journal of the American Statistical Association. 44: 335–341. doi:10.1080/01621459.1949.10483310.
  12. "SIAM News, November 1994.". Retrieved 6 June 2012. Systems Optimization Laboratory, Stanford University Huang Engineering Center (site host/mirror).
  13. Von Neumann, J., Theory of Self-Reproduiing Automata, Univ. of Illinois Press, Urbana, 1966.
  14. A. M. Turing, Rounding-off errors in matrix processes. Quart. J Mech. Appl. Math. 1 (1948), 287–308 (according to Poole, David (2006), Linear Algebra: A Modern Introduction (2nd ed.), Canada: Thomson Brooks/Cole, ISBN 0-534-99845-3.) .
  15. The computer model that once explained the British economy. Larry Elliott, The Guardian, Thursday 8 May 2008.
  16. Phillip's Economic Computer, 1949. Exhibit at London Science Museum.
  17. Charney, J.; Fjørtoft, R.; von Neumann, J. (1950). "Numerical Integration of the Barotropic Vorticity Equation". Tellus. 2 (4).
  18. See the review article:- Smagorinsky, J (1983). "The Beginnings of Numerical Weather Prediction and General Circulation Modelling: Early Recollections" (PDF). Advances in Geophysics. 25. Retrieved 6 June 2012.
  19. Magnus R. Hestenes and Eduard Stiefel, Methods of Conjugate Gradients for Solving Linear Systems, J. Res. Natl. Bur. Stand. 49, 409-436 (1952).
  20. Eduard Stiefel,U¨ ber einige Methoden der Relaxationsrechnung (in German), Z. Angew. Math. Phys. 3, 1-33 (1952).
  21. Cornelius Lanczos, Solution of Systems of Linear Equations by Minimized Iterations, J. Res. Natl. Bur. Stand. 49, 33-53 (1952).
  22. Cornelius Lanczos, An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators, J. Res. Natl. Bur. Stand. 45, 255-282 (1950).
  23. Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. (1953). "Equations of State Calculations by Fast Computing Machines" (PDF). Journal of Chemical Physics. 21 (6): 1087–1092. doi:10.1063/1.1699114.
  24. Alder, B. J.; Wainwright, T. E. (1957). "Phase Transition for a Hard Sphere System". J. Chem. Phys. 27 (5): 1208. doi:10.1063/1.1743957.
  25. Alder, B. J.; Wainwright, T. E. (1962). "Phase Transition in Elastic Disks". Phys. Rev. 127 (2): 359–361. doi:10.1103/PhysRev.127.359.
  26. Householder, A. S. (1958). "Unitary Triangularization of a Nonsymmetric Matrix". Journal of the ACM. 5 (4): 339342. doi:10.1145/320941.320947. MR 0111128.
  27. Francis, J.G.F. (1961). "The QR Transformation, I". The Computer Journal. 4 (3): 265–271. doi:10.1093/comjnl/4.3.265.
  28. Francis, J.G.F. (1962). "The QR Transformation, II". The Computer Journal. 4 (4): 332–345. doi:10.1093/comjnl/4.4.332.
  29. Vera N. Kublanovskaya (1961), "On some algorithms for the solution of the complete eigenvalue problem," USSR Computational Mathematics and Mathematical Physics, 1(3), pages 637–657 (1963, received Feb 1961). Also published in: Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki [Journal of Computational Mathematics and Mathematical Physics], 1(4), pages 555–570 (1961).
  30. RW Clough, "The Finite Element Method in Plane Stress Analysis," Proceedings of 2nd ASCE Conference on Electronic Computation, Pittsburgh, PA, Sept. 8, 9, 1960.
  31. Lorenz, Edward N. (1963). "Deterministic Nonperiodic Flow" (PDF). Journal of the Atmospheric Sciences. 20 (2): 130–141. doi:10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2.
  32. Rahman, A (1964). "Correlations in the Motion of Atoms in Liquid Argon". Phys Rev. 136 (2A): A405–A41. Bibcode:1964PhRv..136..405R. doi:10.1103/PhysRev.136.A405.
  33. Cooley, James W., and John W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Math. Comput. 19, 297–301 (1965).
  34. B. Mandelbrot; Les objets fractals, forme, hasard et dimension (in French). Publisher: Flammarion (1975), ISBN ISBN 9782082106474 ; English translation Fractals: Form, Chance and Dimension. Publisher: Freeman, W. H & Company. (1977). ISBN 9780716704737.
  35. Mandelbrot, Benoît B.; (1983). The Fractal Geometry of Nature. San Francisco: W.H. Freeman. ISBN 0-7167-1186-9.
  36. Appel, Kenneth; Haken, Wolfgang (1977). "Every planar map is four colorable, Part I: Discharging". Illinois Journal of Mathematics. 21: 429–490.
  37. Appel, K.; Haken, W. (1977). "Every Planar Map is Four-Colorable, II: Reducibility". Illinois J. Math. 21: 491–567.
  38. Appel, K.; Haken, W. (1977). "The Solution of the Four-Color Map Problem". Sci. Amer. 237: 108–121. doi:10.1038/scientificamerican1077-108.
  39. L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT, Cambridge, (1987).
  40. Rokhlin, Vladimir (1985). "Rapid Solution of Integral Equations of Classic Potential Theory." J. Computational Physics Vol. 60, pp. 187-207.
  41. L. Greengard and V. Rokhlin, "A fast algorithm for particle simulations," J. Comput. Phys., 73 (1987), no. 2, pp. 325–348.
  42. NCSA Mosaic. National Center for Supercomputing Applications homepage. Retrieved 11 Nov 2012.

External links

This article is issued from Wikipedia - version of the 11/7/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.