Universal Teichmüller space
In mathematical complex analysis, universal Teichmüller space T(1) is a Teichmüller space containing the Teichmüller space T(G) of every Fuchsian group G. It was introduced by Bers (1965) as the set of boundary values of quasiconformal maps of the upper half-plane that fix 0, 1, and ∞.
References
- Bers, Lipman (1965), "Automorphic forms and general Teichmüller spaces", in Aeppli, A.; Calabi, Eugenio; Röhrl, H., Proceedings of the Conference on Complex Analysis, Minneapolis 1964, Berlin, New York: Springer-Verlag, pp. 109–113
- Bers, Lipman (1970), "Universal Teichmüller space", in Gilbert, Robert P.; Newton, Roger G., Analytic methods in mathematical physics (Sympos., Indiana Univ., Bloomington, Ind., 1968), Gordon and Breach, pp. 65–83
- Bers, Lipman (1972), "Uniformization, moduli, and Kleinian groups", The Bulletin of the London Mathematical Society, 4 (3): 257–300, doi:10.1112/blms/4.3.257, ISSN 0024-6093, MR 0348097
- Gardiner, Frederick P.; Harvey, William J. (2002), "Universal Teichmüller space", Handbook of complex analysis: geometric function theory, Vol. 1, Amsterdam: North-Holland, pp. 457–492, arXiv:math/0012168, doi:10.1016/S1874-5709(02)80016-6, MR 1966201
- Pekonen, Osmo (1995), "Universal Teichmüller space in geometry and physics", Journal of Geometry and Physics, 15 (3): 227–251, doi:10.1016/0393-0440(94)00007-Q, ISSN 0393-0440, MR 1316332
This article is issued from Wikipedia - version of the 11/1/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.