Circle packing in a square
Circle packing in a square is a packing problem in recreational mathematics, where the aim is to pack n unit circles into the smallest possible square; or, equivalently, to arrange n points in a unit square for the greatest minimal separation, dn, between points.[1] To convert between these two formulations of the problem, the square side for unit circles will be .
Solutions (not necessarily optimal) have been computed for every N≤10,000.[2] Solutions up to N=20 are shown below.:[2]
Number of circles | Square size (side length) | dn[1] | Number density | Figure |
---|---|---|---|---|
1 | 2 | ∞ | 0.25 | |
2 | ≈ 3.414... |
≈ 1.414... |
0.172... | |
3 | ≈ 3.931... |
≈ 1.035... |
0.194... | |
4 | 4 | 1 | 0.25 | |
5 | ≈ 4.828... |
≈ 0.707... |
0.215... | |
6 | ≈ 5.328... |
≈ 0.601... |
0.211... | |
7 | ≈ 5.732... |
≈ 0.536... |
0.213... | |
8 | ≈ 5.863... |
≈ 0.518... |
0.233... | |
9 | 6 | 0.5 | 0.25 | |
10 | 6.747... | 0.421... | 0.220... | |
11 | 7.022... | 0.398... | 0.223... | |
12 | ≈ 7.144... |
0.389... | 0.235... | |
13 | 7.463... | 0.366... | 0.233... | |
14 | ≈ 7.732... |
0.348... | 0.226... | |
15 | ≈ 7.863... |
0.341... | 0.243... | |
16 | 8 | 0.333... | 0.25 | |
17 | 8.532... | 0.306... | 0.234... | |
18 | ≈ 8.656... |
0.300... | 0.240... | |
19 | 8.907... | 0.290... | 0.240... | |
20 | ≈ 8.978... |
0.287... | 0.248... |
References
- 1 2 Croft, Hallard T.; Falconer, Kenneth J.; Guy, Richard K. (1991). Unsolved Problems in Geometry. New York: Springer-Verlag. pp. 108–110. ISBN 0-387-97506-3.
- 1 2 Eckard Specht (20 May 2010). "The best known packings of equal circles in a square". Retrieved 25 May 2010.
This article is issued from Wikipedia - version of the 8/29/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.