Circle packing in a square

Circle packing in a square is a packing problem in recreational mathematics, where the aim is to pack n unit circles into the smallest possible square; or, equivalently, to arrange n points in a unit square for the greatest minimal separation, dn, between points.[1] To convert between these two formulations of the problem, the square side for unit circles will be .

Solutions (not necessarily optimal) have been computed for every N≤10,000.[2] Solutions up to N=20 are shown below.:[2]

Number of circles Square size (side length) dn[1] Number density Figure
1 2 0.25
2
≈ 3.414...

≈ 1.414...
0.172...
3
≈ 3.931...

≈ 1.035...
0.194...
4 4 1 0.25
5
≈ 4.828...

≈ 0.707...
0.215...
6
≈ 5.328...

≈ 0.601...
0.211...
7
≈ 5.732...

≈ 0.536...
0.213...
8
≈ 5.863...

≈ 0.518...
0.233...
9 6 0.5 0.25
10 6.747... 0.421... 0.220...
11 7.022... 0.398... 0.223...
12
≈ 7.144...
0.389... 0.235...
13 7.463... 0.366... 0.233...
14
≈ 7.732...
0.348... 0.226...
15
≈ 7.863...
0.341... 0.243...
16 8 0.333... 0.25
17 8.532... 0.306... 0.234...
18
≈ 8.656...
0.300... 0.240...
19 8.907... 0.290... 0.240...
20
≈ 8.978...
0.287... 0.248...

References

  1. 1 2 Croft, Hallard T.; Falconer, Kenneth J.; Guy, Richard K. (1991). Unsolved Problems in Geometry. New York: Springer-Verlag. pp. 108–110. ISBN 0-387-97506-3.
  2. 1 2 Eckard Specht (20 May 2010). "The best known packings of equal circles in a square". Retrieved 25 May 2010.


This article is issued from Wikipedia - version of the 8/29/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.