Sphere packing in a sphere

Sphere packing in a sphere is a three-dimensional packing problem with the objective of packing a given number of equal spheres inside a unit sphere. It is the three-dimensional equivalent of the circle packing in a circle problem in two dimensions.

Number of
unit spheres
Maximum radius of inner spheres[1] Optimality Diagram
1 1.0000 Trivially optimal.
2 0.5000 Trivially optimal.
3 0.4641... Trivially optimal.
4 0.4494... Proven optimal.
5 0.4142... Proven optimal.
6 0.4142... Proven optimal.
7 0.3859... Proven optimal.
8 0.3780... Proven optimal.
9 0.3660... Proven optimal.
10 0.3530... Proven optimal.
11 0.3445... Proven optimal.
12 0.3445... Proven optimal.

References

  1. Pfoertner, Hugo (2008-02-02). "Densest Packings of n Equal Spheres in a Sphere of Radius 1. Largest Possible Radii". Archived from the original on 2012-03-30. Retrieved 2013-11-02.
This article is issued from Wikipedia - version of the 9/14/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.